Cristin-prosjekt-ID: 487753
Sist endret: 20. januar 2022, 00:07

Cristin-prosjekt-ID: 487753
Sist endret: 20. januar 2022, 00:07
Prosjekt

FSI-WT Fluid-Structure Interaction for Wind Turbines

prosjektleder

Trond Kvamsdal
ved Mathematics and Cybernetics ved SINTEF AS

prosjekteier / koordinerende forskningsansvarlig enhet

  • Mathematics and Cybernetics ved SINTEF AS

Finansiering

  • Norges forskningsråd
    Prosjektkode: 216465

Klassifisering

Vitenskapsdisipliner

Meteorologi • Mekaniske og strømningstekniske fag • Matematikk og naturvitenskap • Anvendt matematikk • Matematisk modellering og numeriske metoder • Marin teknologi • Offshoreteknologi • Informasjons- og kommunikasjonsteknologi

Emneord

Beregningsorientert matematikk • fornybar energi

Kategorier

Prosjektkategori

  • Anvendt forskning

Tidsramme

Avsluttet
Start: 1. januar 2012 Slutt: 31. desember 2017

Beskrivelse Beskrivelse

Tittel

FSI-WT Fluid-Structure Interaction for Wind Turbines

Vitenskapelig sammendrag

Vision

High fidelity numerical FSI-simulation is needed to address the industry needs for increased competence related to the core of wind energy, i.e. the conversion of kinetic energy from the wind into mechanical energy that is used to produce electricity.

Main objective

Develop robust and efficient numerical simulation tools for coupled FSI simulation of full scale wind turbines to improve the design and increase the knowlegde of wake vortex effects.

Partial objectives:

a) Develop next generation simulation tools for FSI analysis
b) Improve integration of design and analysis
c) Improve prediction of wind energy production
d) Promote the use of modern CFD tools in the Norwegian wind industry
e) Efficient estimation of turbulent atmospheric inflow conditions
f) Verification and improvement of simplified empirical and parametrized models

 

Project summary

The deep sea offshore wind potential is huge, but will only be realised provided that costs are reduced to a competitive level. This project addresses exactly this, presenting results on technical issues related to the core of wind energy i.e. the conversion of kinetic energy from the wind into mechanical energy that is used to produce electricity. By enabling more understanding of the physics behind the wind turbine interaction through detailed fluid-strucutre interction simulation we may increase the competence in developing more optimized wind turbines as well as more yielding wind farm layouts.

Numerical simulation tools are an invaluable way of gaining new insights into these issues with the possibility of integrating many physical models influencing the performance of the wind turbine. Up to now the integrated numerical simulation tools used by the wind energy industry apply simplified empirical or parametrized models to compute the aerodynamical forces on the turbine blades. Simplified numerical models are computationally efficient, but important details of the flow field and nonlinearities in the interaction of the air flow and rotor blades are not resolved.

Coupled fluid-structure interaction (FSI) simulations are needed for accurate modelling of wind turbines, and also to provide input parameters, to verify and to improve parametrized models. Detailed FSI analysis will be even more important in the design of offshore wind turbines because of the extreme wind conditions at sea.

New methods for accurate, robust and efficient simulation of FSI for wind turbines will be developed in the project. The methods will be implemented to form a state-of-the-art numerical simulation tool for coupled FSI simulations of a full scale rotor utilizing the computational power of modern parallel hardware architectures. Furthermore, the atmospheric interaction is important and will be taken into consideration by establishing representative input profiles.

prosjektdeltakere

prosjektleder

Trond Kvamsdal

  • Tilknyttet:
    Prosjektleder
    ved Mathematics and Cybernetics ved SINTEF AS

Mandar Tabib

  • Tilknyttet:
    Prosjektdeltaker
    ved Mathematics and Cybernetics ved SINTEF AS

Timo Matteo van Opstal

  • Tilknyttet:
    Prosjektdeltaker
    ved Institutt for matematiske fag ved Norges teknisk-naturvitenskapelige universitet

Runar Holdahl

  • Tilknyttet:
    Prosjektdeltaker
    ved Mathematics and Cybernetics ved SINTEF AS

Arne Morten Kvarving

  • Tilknyttet:
    Prosjektdeltaker
    ved Mathematics and Cybernetics ved SINTEF AS
1 - 5 av 8 | Neste | Siste »

Resultater Resultater

High-Resolution Cfd Modelling and Prediction of Terrain-Induced Wind Shear and Turbulence for Aviation Safety.

Tabib, Mandar; Rasheed, Adil; Kvamsdal, Trond. 2019, International Center for Numerical Methods in Engineering (CIMNE). SINTEF, NTNUVitenskapelig Kapittel/Artikkel/Konferanseartikkel

Validation of the numerical simulations of flow around a scaled-down turbine using experimental data from wind tunnel.

Siddiqui, Muhammad Salman; Rasheed, Adil; Kvamsdal, Trond. 2019, Wind and Structures. SINTEF, NTNUVitenskapelig artikkel

High Fidelity Computational Fluid Dynamics Assessment of Wind Tunnel Turbine Test.

Siddiqui, Muhammad Salman; Kvamsdal, Trond; Rasheed, Adil. 2019, Journal of Physics: Conference Series (JPCS). SINTEF, NTNUVitenskapelig artikkel

Finite-Volume High-Fidelity Simulation Combined with Finite-Element-Based Reduced-Order Modeling of Incompressible Flow Problems.

Siddiqui, Muhammad Salman; Fonn, Eivind; Kvamsdal, Trond; Rasheed, Adil. 2019, Energies. SINTEF, NTNUVitenskapelig artikkel

Numerical investigation of modeling frameworks and geometric approximations on NREL 5 MW wind turbine.

Siddiqui, Muhammad Salman; Rasheed, Adil; Tabib, Mandar; Kvamsdal, Trond. 2019, Renewable Energy. SINTEF, NTNUVitenskapelig artikkel
1 - 5 av 56 | Neste | Siste »