Cristin-resultat-ID: 1137572
Sist endret: 31. januar 2015, 10:05
NVI-rapporteringsår: 2014
Resultat
Vitenskapelig artikkel
2014

Grid adaptation for the Dirichlet-Neumann representation method and the multiscale mixed finite-element method

Bidragsytere:
  • Knut Andreas Lie
  • Jostein Roald Natvig
  • Stein Krogstad
  • Yahan Yang og
  • Xiao-Hui Wu

Tidsskrift

Computational Geosciences
ISSN 1420-0597
e-ISSN 1573-1499
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2014
Publisert online: 2014
Volum: 18
Hefte: 3-4
Sider: 357 - 372

Importkilder

Scopus-ID: 2-s2.0-84891892745
Scopus-ID: 2-s2.0-84906942216

Beskrivelse Beskrivelse

Tittel

Grid adaptation for the Dirichlet-Neumann representation method and the multiscale mixed finite-element method

Sammendrag

A Dirichlet–Neumann representation method was recently proposed for upscaling and simulating flow in reservoirs. The DNR method expresses coarse fluxes as linear functions of multiple pressure values along the boundary and at the center of each coarse block. The number of flux and pressure values at the boundary can be adjusted to improve the accuracy of simulation results and, in particular, to resolve important fine-scale details. Improvement over existing approaches is substantial especially for reservoirs that contain high-permeability streaks or channels. As an alternative, the multiscale mixed finite-element (MsMFE) method was designed to obtain fine-scale fluxes at the cost of solving a coarsened problem, but can also be used as upscaling methods that are flexible with respect to geometry and topology of the coarsened grid. Both methods can be expressed in mixed-hybrid form, with local stiffness matrices obtained as “inner products” of numerically computed basis functions with fine-scale sub-resolution. These basis functions are determined by solving local flow problems with piecewise linear Dirichlet boundary conditions for the DNR method and piecewise constant Neumann conditions for MsMFE. Adding discrete pressure points in the DNR method corresponds to subdividing faces in the coarse grid and hence increasing the number of basis functions in the MsMFE method. The methods show similar accuracy for 2D Cartesian cases, but the MsMFE method is more straightforward to formulate in 3D and implement for general grids.

Bidragsytere

Aktiv cristin-person

Knut-Andreas Lie

Bidragsyterens navn vises på dette resultatet som Knut Andreas Lie
  • Tilknyttet:
    Forfatter
    ved Mathematics and Cybernetics ved SINTEF AS

Jostein Roald Natvig

  • Tilknyttet:
    Forfatter
    ved Mathematics and Cybernetics ved SINTEF AS
  • Tilknyttet:
    Forfatter
    ved Diverse norske bedrifter og organisasjoner

Stein Krogstad

  • Tilknyttet:
    Forfatter
    ved Mathematics and Cybernetics ved SINTEF AS

Yahan Yang

  • Tilknyttet:
    Forfatter
    ved Exxon Mobil Corporation

Xiao-Hui Wu

  • Tilknyttet:
    Forfatter
    ved Exxon Mobil Corporation
1 - 5 av 5