Cristin-resultat-ID: 1258716
Sist endret: 11. januar 2016 11:14
NVI-rapporteringsår: 2015
Resultat
Vitenskapelig artikkel
2015

Strain localization in sandstone and its implications for CO2 storage

Bidragsytere:
  • Anita Torabi
  • Roy Gabrielsen
  • Haakon Fossen
  • Philip Ringrose
  • Elin Skurtveit
  • Edward Ando
  • mfl.

Tidsskrift

First Break
ISSN 0263-5046
e-ISSN 1365-2397
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2015
Volum: 33
Hefte: 7
Sider: 81 - 92

Klassifisering

Vitenskapsdisipliner

Matematikk og naturvitenskap

Emneord

Geologi

Beskrivelse Beskrivelse

Tittel

Strain localization in sandstone and its implications for CO2 storage

Sammendrag

Geological storage of CO2 is a key technical solution to the climate-energy challenge, but it has a number of technological constraints (Baines and Worden 2004; Halland et al., 2011), broadly under the themes of assuring adequate storage capacity and long-term storage integrity. A suitable CO2-storage reservoir should consist of rock formations with sufficient porosity, permeability and connectivity in order to provide an adequate storage volume. The role of faults and their associated deformation structures (such as deformation bands and fractures) in controlling both storage capacity and long-term storage integrity is thus a key factor in achieving globally significant CO2 storage (Figure 1). Although some sedimentary basins on the Norwegian continental shelf already harbour operational CO2- injection and storage projects such as Sleipner (Zweigel et al., 2004) and Snøhvit (Hansen et al., 2013), our understanding of reservoir fluid communication due to compartmentalization is far from complete and will be important for further use of the offshore basins for CO2 storage. In addition to the inherited structural features, elevated injection pressures may cause hydraulic fractures or stimulate fault reactivation which both point to the need to characterize the geomechanical response of the rock system to CO2 injection (Rutqvist, 2012; Iding and Ringrose, 2010). In the present work, we investigate the effects of faults and their related structures on the geomechanical and petrophysical properties of sandstone reservoirs. Important components of fault systems include fractures and deformation bands in the damage zone and fault core (Caine et al., 1996; Shipton and Cowie, 2003; Fossen et al., 2007). Fault systems may enhance or suppress fluid communication, which in turn may affect the storage capacity and conductivity of the candidate reservoirs (Figure 1). As a case study, a reservoir model of the Tubåen Formation at the Snøhvit CO2 injection site in the Barents Sea (Grude et al., 2013; Hansen et al., 2013) was investigated using 4D seismic data and fault attribute analysis. The characteristics of deformation structures (e.g. sub-seismic faults, deformation bands and fractures) were investigated by field studies of outcrop analogues and by triaxial laboratory experiments to provide a basis for numerical modelling. Fault architecture within reactivated fault systems was studied by the use of analogue modelling. Key questions addressed in the work include: a) Where and when might strain localize in the reservoir? b) How does rock strain influence fluid communication? c) How might structural architecture affect CO2 storage effectiveness?

Bidragsytere

Anita Torabi

  • Tilknyttet:
    Forfatter
    ved NORCE Energi ved NORCE Norwegian Research Centre AS

Roy Helge Gabrielsen

Bidragsyterens navn vises på dette resultatet som Roy Gabrielsen
  • Tilknyttet:
    Forfatter
    ved Institutt for geofag ved Universitetet i Oslo
Aktiv cristin-person

Haakon Fossen

  • Tilknyttet:
    Forfatter
    ved Universitetsmuseet i Bergen, Avdeling for naturhistorie ved Universitetet i Bergen

Philip Ringrose

  • Tilknyttet:
    Forfatter
    ved Institutt for geovitenskap og petroleum ved Norges teknisk-naturvitenskapelige universitet
  • Tilknyttet:
    Forfatter
    ved Equinor

Elin Skurtveit

  • Tilknyttet:
    Forfatter
    ved Petroleumsgeomekanikk og geofysikk (PGG) ved Norges Geotekniske Institutt
1 - 5 av 15 | Neste | Siste »