Info
Meny
English
Logg inn
Søk etter prosjekter, resultater og personer
Søk etter prosjekter, resultater og personer
Historikk
Cristin-resultat-ID:
1371136
Sist endret:
16. februar 2017 12:42
NVI-rapporteringsår:
2016
Resultat
Vitenskapelig artikkel
2016
Stochastic Galerkin framework with locally reduced bases for nonlinear two-phase transport in heterogeneous formations
Per Pettersson
og
Hamdi Tchelepi
Tidsskrift
Tidsskrift
Computer Methods in Applied Mechanics and Engineering
ISSN 0045-7825
e-ISSN 1879-2138
NVI-nivå 2
Finn i kanalregisteret
Om resultatet
Om resultatet
Vitenskapelig artikkel
Publiseringsår: 2016
Volum: 310
Sider: 367 - 387
Lenker
Lenker
original online (doi)
https://doi.org/10.1016/j.cma.2016.07.013
Importkilder
Importkilder
Scopus-ID: 2-s2.0-84980709715
Scopus-ID: 2-s2.0-84982844531
Beskrivelse
Beskrivelse
Engelsk
Tittel
Stochastic Galerkin framework with locally reduced bases for nonlinear two-phase transport in heterogeneous formations
Sammendrag
The generalized polynomial chaos method with multiwavelet basis functions is applied to the Buckley–Leverett equation. We consider a spatially homogeneous domain modeled as a random field. The problem is projected onto stochastic basis functions which yields an extended system of partial differential equations. Analysis and numerical methods leading to reduced computational cost are presented for the extended system of equations. The accurate representation of the evolution of a discontinuous stochastic solution over time requires a large number of stochastic basis functions. Adaptivity of the stochastic basis to reduce computational cost is challenging in the stochastic Galerkin setting since the change of basis affects the system matrix itself. To achieve adaptivity without adding overhead by rewriting the entire system of equations for every grid cell, we devise a basis reduction method that distinguishes between locally significant and insignificant modes without changing the actual system matrices. Results are presented for problems in one and two spatial dimensions, with varying number of stochastic dimensions. We show how to obtain stochastic velocity fields from realistic permeability fields and demonstrate the performance of the stochastic Galerkin method with local basis reduction. The system of conservation laws is discretized with a finite volume method and we demonstrate numerical convergence to the reference solution obtained through Monte Carlo sampling.
Vis
fullstendig beskrivelse
Bidragsytere
Bidragsytere
Per Pettersson
Forfatter
ved NORCE Energi ved NORCE Norwegian Research Centre AS
Hamdi Tchelepi
Forfatter
ved Stanford University
1
-
2
av
2
Tilknyttede prosjekter
Tilknyttede prosjekter
CO2 Storage in the North Sea: Quantification of Uncertainties and Error Reduction (CONQUER)
Per Pettersson + 6 deltakere
NORCE Energi ved NORCE Norwegian Research Centre AS
27 resultater
Avsluttet prosjekt
193825/NFR/FME-SUCCESS
Arvid Nøttvedt + 12 deltakere
NORCE Teknologi ved NORCE Norwegian Research Centre AS
228 resultater
Avsluttet prosjekt
1
-
2
av
2