Cristin-resultat-ID: 1454849
Sist endret: 22. mai 2017, 14:32
NVI-rapporteringsår: 2017
Resultat
Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
2017

Miniature, low-cost, 200 mW, infrared thermal emitter sealed by wafer-level bonding

Bidragsytere:
  • Kari Schjølberg-Henriksen
  • Jo Gjessing
  • Kari Anne Hestnes Bakke
  • Sanja Hadzialic og
  • Dag Thorstein Wang

Bok

Silicon Photonics XII
ISBN:
  • 9781510606579

Utgiver

SPIE - The International Society for Optics and Photonics
NVI-nivå 1

Serie

Proceedings of SPIE, the International Society for Optical Engineering
ISSN 0277-786X
e-ISSN 1996-756X
NVI-nivå 1

Om resultatet

Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
Publiseringsår: 2017
Volum: 10108
Hefte: .
ISBN:
  • 9781510606579
Open Access

Importkilder

Scopus-ID: 2-s2.0-85020501410

Klassifisering

Fagfelt (NPI)

Fagfelt: Elektronikk og kybernetikk
- Fagområde: Realfag og teknologi

Beskrivelse Beskrivelse

Tittel

Miniature, low-cost, 200 mW, infrared thermal emitter sealed by wafer-level bonding

Sammendrag

Infrared (IR) thermal emitters are widely used in monitoring applications. For autonomous systems, miniaturized devices with low power consumption are needed. We have designed, fabricated and tested a novel device design, packaged on the wafer level by Al-Al thermo-compression bonding. 80 μm wide Aluminium frames on device and cap wafers were bonded in vacuum at 550°C, applying a force of 25 kN for 1 hour. The bond force translated to a bond pressure of 39 MPa. Subsequent device operation showed that the seals were hermetic, and that the emitters were encapsulated in an inert atmosphere. The emitters were optimized for radiation at λ=3.5 μm. Emission spectra by Fourier Transform Infrared Spectroscopy showed high emissivity in the wavelength range 3 – 10 μm at 35 mA driving current and 5.7 V bias, i.e. 200 mW power consumption. The emitter temperature was around 700 °C. The rise and fall times of the emitters were below 8 and 3 ms, respectively. The low thermal mass indicates that pulsed operation at frequencies around 100 Hz could be realized with about 90 % modulation depth. The measured characteristics were in good agreement with COMSOL simulations. Thus, the presented devices have lower power consumption, an order of magnitude higher modulation frequency, and a production cost reduced by 40 – 60%1-4 compared to available, individually packaged devices. The patented device sealing provides through-silicon conductors and enables direct surface mounting of the components. © (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Bidragsytere

Kari Schjølberg-Henriksen

  • Tilknyttet:
    Forfatter
    ved Smart Sensors and Microsystems ved SINTEF AS

Jo Gjessing

  • Tilknyttet:
    Forfatter
    ved Smart Sensors and Microsystems ved SINTEF AS

Kari Anne Hestnes Bakke

  • Tilknyttet:
    Forfatter
    ved Smart Sensors and Microsystems ved SINTEF AS

Sanja Hadzialic

  • Tilknyttet:
    Forfatter
    ved Smart Sensors and Microsystems ved SINTEF AS

Dag Thorstein Wang

  • Tilknyttet:
    Forfatter
    ved Smart Sensors and Microsystems ved SINTEF AS
1 - 5 av 5

Resultatet er en del av Resultatet er en del av

Silicon Photonics XII.

Reed, Graham; Knights, Andrew P.. 2017, SPIE - The International Society for Optics and Photonics. MCMASTER, UoSVitenskapelig antologi/Konferanseserie
1 - 1 av 1