Cristin-resultat-ID: 1506603
Sist endret: 9. juli 2018 14:23
NVI-rapporteringsår: 2017
Resultat
Vitenskapelig artikkel
2018

Effect of brine-CO2 fracture flow on velocity and electrical resistivity of naturally fractured tight sandstones

Bidragsytere:
  • Mohammad Nooraiepour
  • Bahman Bohloli
  • Joonsang Park
  • Guillaume Sauvin
  • Elin Skurtveit og
  • Nazmul Haque Mondol

Tidsskrift

Geophysics
ISSN 0016-8033
e-ISSN 1942-2156
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2018
Publisert online: 2017
Trykket: 2018
Volum: 83
Hefte: 1
Sider: WA37 - WA48
Open Access

Importkilder

Scopus-ID: 2-s2.0-85037045015

Beskrivelse Beskrivelse

Tittel

Effect of brine-CO2 fracture flow on velocity and electrical resistivity of naturally fractured tight sandstones

Sammendrag

Fracture networks inside geological CO2 storage reservoirs can serve as primary fluid flow conduit, particularly in low-permeability formations. While some experiments focused on the geophysical properties of brine- and CO2-saturated rocks during matrix flow, geophysical monitoring of fracture flow when CO2 displaces brine inside the fracture seems to be overlooked. We have conducted laboratory geophysical monitoring of fluid flow in a naturally fractured tight sandstone during brine and liquid CO2 injection. For the experiment, the low-porosity, low-permeability naturally fractured core sample from the Triassic De Geerdalen Formation was acquired from the Longyearbyen CO2 storage pilot at Svalbard, Norway. Stress-dependence, hysteresis and the influence of fluid-rock interactions on fracture permeability were investigated. The results suggest that in addition to stress level and pore pressure, mobility and fluid type can affect fracture permeability during loading and unloading cycles. Moreover, the fluid-rock interaction may impact volumetric strain and consequently fracture permeability through swelling and dry out during water and CO2 injection, respectively. Acoustic velocity and electrical resistivity were measured continuously in the axial direction and three radial levels. Geophysical monitoring of fracture flow revealed that the axial P-wave velocity and axial electrical resistivity are more sensitive to saturation change than the axial S-wave, radial P-wave, and radial resistivity measurements when CO2 was displacing brine, and the matrix flow was negligible. The marginal decreases of acoustic velocity (maximum 1.6% for axial Vp) compared to 11% increase in axial electrical resistivity suggest that in the case of dominant fracture flow within the fractured tight reservoirs, the use of electrical resistivity methods have a clear advantage compared to seismic methods to monitor CO2 plume. The knowledge learned from such experiments can be useful for monitoring geological CO2 storage where the primary fluid flow conduit is fracture network.

Bidragsytere

Mohammad Nooraiepour

  • Tilknyttet:
    Forfatter
    ved Institutt for geofag ved Universitetet i Oslo

Bahman Bohloli

  • Tilknyttet:
    Forfatter
    ved Petroleumsgeomekanikk og geofysikk (PGG) ved Norges Geotekniske Institutt

Joonsang Park

  • Tilknyttet:
    Forfatter
    ved Petroleumsgeomekanikk og geofysikk (PGG) ved Norges Geotekniske Institutt

Guillaume Sauvin

  • Tilknyttet:
    Forfatter
    ved Petroleumsgeomekanikk og geofysikk (PGG) ved Norges Geotekniske Institutt

Elin Skurtveit

  • Tilknyttet:
    Forfatter
    ved Petroleumsgeomekanikk og geofysikk (PGG) ved Norges Geotekniske Institutt
1 - 5 av 6 | Neste | Siste »