Cristin-resultat-ID: 1693539
Sist endret: 12. januar 2021, 10:38
NVI-rapporteringsår: 2019
Resultat
Vitenskapelig artikkel
2019

Morphology and Activity of Electrolytic Silver Catalyst for Partial Oxidation of Methanol to Formaldehyde Under Different Exposures and Oxidation Reactions

Bidragsytere:
  • Stine Lervold
  • Kamilla Arnesen
  • Nikolas Beck
  • Rune Lødeng
  • Jia Yang
  • Kristin Bingen
  • mfl.

Tidsskrift

Topics in catalysis
ISSN 1022-5528
e-ISSN 1572-9028
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2019
Publisert online: 2019
Trykket: 2019
Volum: 62
Hefte: 7-11
Sider: 699 - 711
Open Access

Importkilder

Scopus-ID: 2-s2.0-85063056296

Beskrivelse Beskrivelse

Tittel

Morphology and Activity of Electrolytic Silver Catalyst for Partial Oxidation of Methanol to Formaldehyde Under Different Exposures and Oxidation Reactions

Sammendrag

Electrolytic silver particles were studied in relation to its morphology changes under different reactive and non-reactive atmospheres, and its catalytic activity in oxidation of methanol to formaldehyde (MTF), carbon monoxide to carbon dioxide, and hydrogen to water. Scanning electron microscopy and X-ray diffraction (XRD) were applied to analyze structural changes in the silver catalyst after exposure or interaction with nitrogen, oxygen, methanol/water, carbon monoxide and hydrogen, applied either individually or in selected combinations, at temperatures approaching 700 °C. The as-received Ag catalyst consists of agglomerated, faceted, polycrystalline particles. These undergo massive morphological changes during MTF reaction conditions. It was found that Ag catalysts exposed to oxygen-free atmospheres (N2, H2/N2 and CH3OH/H2O/N2) at 650 °C exhibit minimal changes in surface morphology compared to the fresh catalyst, while severe restructuring occurs on the mesoscopic scale under oxygen containing atmospheres (O2/N2, H2/O2/N2 and CO/O2/N2) at elevated temperature. This restructuring renders a smoothened surface with refacetted areas and many pinholes, while a small primary crystallite size (~ 40 nm, XRD) is maintained. Such pinholes are commonly described as a result of sub-surface oxygen/hydrogen/hydroxyl interactions. Here, they are present in all samples exposed to oxygen, indicating that presence of hydrogen is not prerequisite. For the CO and H2 oxidation sub-systems, the initial activity was comparable. But, while the conversion of H2 is preserved during 70 h time on stream, the CO conversion gradually reduces from 70 to 10%. This suggests that the restructuring associated with dissolution of O at high temperature inhibits the CO to CO2 pathway.

Bidragsytere

Stine Lervold

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Kamilla Arnesen

  • Tilknyttet:
    Forfatter
    ved Institutt for materialteknologi ved Norges teknisk-naturvitenskapelige universitet

Nikolas Beck

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Rune Lødeng

  • Tilknyttet:
    Forfatter
    ved Prosessteknologi ved SINTEF AS

Jia Yang

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet
1 - 5 av 8 | Neste | Siste »