Cristin-resultat-ID: 1759352
Sist endret: 27. november 2020, 13:53
NVI-rapporteringsår: 2020
Resultat
Vitenskapelig artikkel
2020

Core-scale sensitivity study of CO2 foam injection strategies for mobility control, enhanced oil recovery, and CO2 storage

Bidragsytere:
  • Zachary Paul Alcorn
  • Sunniva Fredriksen
  • Mohan Sharma
  • Tore Lyngås Føyen
  • Connie Wergeland
  • Martin Fernø
  • mfl.

Tidsskrift

E3S Web of Conferences
ISSN 2267-1242
e-ISSN 2267-1242
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2020
Volum: 146
Sider: 1 - 12
Artikkelnummer: 02002
Open Access

Importkilder

Scopus-ID: 2-s2.0-85079611772

Beskrivelse Beskrivelse

Tittel

Core-scale sensitivity study of CO2 foam injection strategies for mobility control, enhanced oil recovery, and CO2 storage

Sammendrag

This paper presents experimental and numerical sensitivity studies to assist injection strategy design for an ongoing CO2 foam field pilot. The aim is to increase the success of in-situ CO2 foam generation and propagation into the reservoir for CO2 mobility control, enhanced oil recovery (EOR) and CO2 storage. Un-steady state in-situ CO2 foam behavior, representative of the near wellbore region, and steady-state foam behavior was evaluated. Multi-cycle surfactant-alternating gas (SAG) provided the highest apparent viscosity foam of 120.2 cP, compared to co-injection (56.0 cP) and single-cycle SAG (18.2 cP) in 100% brine saturated porous media. CO2 foam EOR corefloods at first-contact miscible (FCM) conditions showed that multi-cycle SAG generated the highest apparent foam viscosity in the presence of refined oil (n-Decane). Multi-cycle SAG demonstrated high viscous displacement forces critical in field implementation where gravity effects and reservoir heterogeneities dominate. At multiple-contact miscible (MCM) conditions, no foam was generated with either injection strategy as a result of wettability alteration and foam destabilization in presence of crude oil. In both FCM and MCM corefloods, incremental oil recoveries were on average 30.6% OOIP regardless of injection strategy for CO2 foam and base cases (i.e. no surfactant). CO2 diffusion and miscibility dominated oil recovery at the core-scale resulting in high microscopic CO2 displacement. CO2 storage potential was 9.0% greater for multi-cycle SAGs compared to co-injections at MCM. A validated core-scale simulation model was used for a sensitivity analysis of grid resolution and foam quality. The model was robust in representing the observed foam behavior and will be extended to use in field scale simulations.

Bidragsytere

Zachary Paul Alcorn

  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk og teknologi ved Universitetet i Bergen

Sunniva Fredriksen

  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk og teknologi ved Universitetet i Bergen

Mohan Sharma

  • Tilknyttet:
    Forfatter
    ved Institutt for energiressurser ved Universitetet i Stavanger

Tore Lyngås Føyen

  • Tilknyttet:
    Forfatter
    ved Anvendt geovitenskap ved SINTEF AS
  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk og teknologi ved Universitetet i Bergen

Connie Wergeland

  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk og teknologi ved Universitetet i Bergen
1 - 5 av 8 | Neste | Siste »