Cristin-resultat-ID: 1764379
Sist endret: 18. februar 2020, 08:37
NVI-rapporteringsår: 2019
Resultat
Vitenskapelig artikkel
2019

Thermodynamics of the carbon dioxide plus nitrogen plus methane (CO2 + N2 + CH4) system: Measurements of vapor-liquid equilibrium data at temperatures from 223 to 298 K and verification of EOS-CG-2019 equation of state

Bidragsytere:
  • Sindre Ottøy
  • Tobias Neumann
  • Hans Georg Jacob Stang
  • Jana Poplsteinova Jakobsen
  • Anders Austegard og
  • Sigurd Weidemann Løvseth

Tidsskrift

Fluid Phase Equilibria
ISSN 0378-3812
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2019
Publisert online: 2019
Trykket: 2020
Volum: 509
Artikkelnummer: 112444
Open Access

Importkilder

Scopus-ID: 2-s2.0-85078062882

Beskrivelse Beskrivelse

Tittel

Thermodynamics of the carbon dioxide plus nitrogen plus methane (CO2 + N2 + CH4) system: Measurements of vapor-liquid equilibrium data at temperatures from 223 to 298 K and verification of EOS-CG-2019 equation of state

Sammendrag

Vapor-liquid equilibria (VLE) data of the ternary mixture of CO2 + N2 + CH4 were measured at the isotherms 223 K, 253 K, 273 K, 283 K, and 298 K and for pressures in the range of 0.8 MPa–9.3 MPa. The 62 experimental dew or bubble point data points have been measured using an analytical technique. For each temperature, the ratio between N2 and CH4 mole fraction in the total composition has been close to constant, enabling the data to be visualized as quasi phase envelopes. Estimated standard measurement uncertainties (k = 1) better than 14 mK in temperature, 1.5 kPa in pressure, and 0.06 mol% in composition are reported, yielding a total uncertainty in terms of composition better than 0.07 mol%. The experimental data were compared to the EOS-CG-2019 model, which is a state-of-the-art Helmholtz energy-based equation of state for the mixture of CO2 + N2 + CH4. All deviations between model and experimental data points are below 0.5 mol% for liquid compositions and 1.0 mol% for vapor compositions. The deviations between model and experimental points in the ternary mixture of CO2 + N2 + CH4 follow the same trends seen in earlier reports between model and experimental data for the binary mixtures of CO2 + N2 and CO2 + CH4. In addition, the model was analysed with respect to other thermophysical properties available in the literature. To a large extent, the results presented in this work validate the assumption that the thermodynamic properties of the multicomponent system CO2 + N2 + CH4 can be described purely based on the pure component and binary mixture contributions.

Bidragsytere

Sindre Ottøy

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS
  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Tobias Neumann

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet
  • Tilknyttet:
    Forfatter
    ved Ruhr-Universität Bochum

Hans Georg Jacob Stang

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS

Jana Poplsteinova Jakobsen

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Anders Austegard

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS
1 - 5 av 6 | Neste | Siste »