Cristin-resultat-ID: 1804285
Sist endret: 8. februar 2022, 08:54
Resultat
Vitenskapelig artikkel
2020

Order theory for discrete gradient methods

Bidragsytere:
  • Sølve Eidnes

Tidsskrift

arXiv.org
ISSN 2331-8422

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2020
Publisert online: 2020

Beskrivelse Beskrivelse

Tittel

Order theory for discrete gradient methods

Sammendrag

We present a subclass of the discrete gradient methods, which are integrators designed to preserve invariants of ordinary differential equations. From a formal series expansion of the methods, we derive conditions for arbitrarily high order. We devote considerable space to the average vector field discrete gradient, from which we get P-series methods in the general case, and B-series methods for canonical Hamiltonian systems. Higher order schemes are presented and applied to the Hénon–Heiles system and a Lotka–Volterra system.

Bidragsytere

Sølve Eidnes

  • Tilknyttet:
    Forfatter
    ved Institutt for matematiske fag ved Norges teknisk-naturvitenskapelige universitet
1 - 1 av 1