Cristin-resultat-ID: 1819962
Sist endret: 10. mars 2021, 11:18
NVI-rapporteringsår: 2020
Resultat
Vitenskapelig artikkel
2020

Explaining decisions of deep neural networks used for fish age prediction

Bidragsytere:
  • Alba Ordonez
  • Line Eikvil
  • Arnt-Børre Salberg
  • Alf Harbitz
  • Sean Meling Murray og
  • Michael Kampffmeyer

Tidsskrift

PLOS ONE
ISSN 1932-6203
e-ISSN 1932-6203
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2020
Volum: 15
Hefte: 6
Artikkelnummer: e0235013
Open Access

Importkilder

Scopus-ID: 2-s2.0-85086754337

Beskrivelse Beskrivelse

Tittel

Explaining decisions of deep neural networks used for fish age prediction

Sammendrag

Age-reading of fish otoliths (ear stones) is important for the sustainable management of fish resources. However, the procedure is challenging and requires experienced readers to carefully examine annual growth zones. In a recent study, convolutional neural networks (CNNs) have been demonstrated to perform reasonably well on automatically predicting fish age from otolith images. In the present study, we carefully investigate the prediction rule learned by such neural networks to provide insight into the features that identify certain fish age ranges. For this purpose, a recent technique for visualizing and analyzing the predictions of the neural networks was applied to different versions of the otolith images. The results indicate that supplementary knowledge about the internal structure improves the results for the youngest age groups, compared to using only the contour shape attribute of the otolith. However, the contour shape and size attributes are, in general, sufficient for older age groups. In addition, within specific age ranges we find that the network tends to focus on particular areas of the otoliths and that the most discriminating factors seem to be related to the central part and the outer edge of the otolith. Explaining age predictions from otolith images as done in this study will hopefully help build confidence in the potential of deep learning algorithms for automatic age prediction, as well as improve the quality of the age estimation.

Bidragsytere

Alba Ordonez

  • Tilknyttet:
    Forfatter
    ved Statistisk analyse, maskinlæring og bildeanalyse SAMBA ved Norsk Regnesentral

Line Eikvil

  • Tilknyttet:
    Forfatter
    ved Statistisk analyse, maskinlæring og bildeanalyse SAMBA ved Norsk Regnesentral

Arnt-Børre Salberg

  • Tilknyttet:
    Forfatter
    ved Statistisk analyse, maskinlæring og bildeanalyse SAMBA ved Norsk Regnesentral

Alf Harbitz

  • Tilknyttet:
    Forfatter
    ved Dyphavsarter og bruskfisk ved Havforskningsinstituttet

Sean Meling Murray

  • Tilknyttet:
    Forfatter
    ved Statistisk analyse, maskinlæring og bildeanalyse SAMBA ved Norsk Regnesentral
1 - 5 av 6 | Neste | Siste »