Cristin-resultat-ID: 1826666
Sist endret: 2. september 2020, 11:11
NVI-rapporteringsår: 2020
Resultat
Vitenskapelig artikkel
2020

Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment

Bidragsytere:
  • Xiang-Yu Li
  • Axel Brandenburg
  • Gunilla Svensson
  • Nils Erland L Haugen
  • Bernhard Mehlig og
  • Igor Rogachevskii

Tidsskrift

Journal of the Atmospheric Sciences
ISSN 0022-4928
e-ISSN 1520-0469
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2020
Publisert online: 2019
Trykket: 2020
Volum: 77
Hefte: 1
Sider: 337 - 353
Open Access

Importkilder

Scopus-ID: 2-s2.0-85081636349

Beskrivelse Beskrivelse

Tittel

Condensational and Collisional Growth of Cloud Droplets in a Turbulent Environment

Sammendrag

We investigate the effect of turbulence on the combined condensational and collisional growth of cloud droplets by means of high-resolution direct numerical simulations of turbulence and a superparticle approximation for droplet dynamics and collisions. The droplets are subject to turbulence as well as gravity, and their collision and coalescence efficiencies are taken to be unity. We solve the thermodynamic equations governing temperature, water vapor mixing ratio, and the resulting supersaturation fields together with the Navier–Stokes equation. We find that the droplet size distribution broadens with increasing Reynolds number and/or mean energy dissipation rate. Turbulence affects the condensational growth directly through supersaturation fluctuations, and it influences collisional growth indirectly through condensation. Our simulations show for the first time that, in the absence of the mean updraft cooling, supersaturation-fluctuation-induced broadening of droplet size distributions enhances the collisional growth. This is contrary to classical (nonturbulent) condensational growth, which leads to a growing mean droplet size, but a narrower droplet size distribution. Our findings, instead, show that condensational growth facilitates collisional growth by broadening the size distribution in the tails at an early stage of rain formation. With increasing Reynolds numbers, evaporation becomes stronger. This counteracts the broadening effect due to condensation at late stages of rain formation. Our conclusions are consistent with results of laboratory experiments and field observations, and show that supersaturation fluctuations are important for precipitation.

Bidragsytere

Xiang-Yu Li

  • Tilknyttet:
    Forfatter
    ved Sverige
  • Tilknyttet:
    Forfatter
    ved University of Colorado at Boulder
  • Tilknyttet:
    Forfatter
    ved Nordiska institutet för teoretisk fysik
  • Tilknyttet:
    Forfatter
    ved Stockholms universitet

Axel Brandenburg

  • Tilknyttet:
    Forfatter
    ved University of Colorado at Boulder
  • Tilknyttet:
    Forfatter
    ved Stockholms universitet
  • Tilknyttet:
    Forfatter
    ved Nordiska institutet för teoretisk fysik

Gunilla Svensson

  • Tilknyttet:
    Forfatter
    ved Stockholms universitet
  • Tilknyttet:
    Forfatter
    ved Sverige

Nils Erland L Haugen

  • Tilknyttet:
    Forfatter
    ved Institutt for energi- og prosessteknikk ved Norges teknisk-naturvitenskapelige universitet
  • Tilknyttet:
    Forfatter
    ved Termisk energi ved SINTEF Energi AS

Bernhard Mehlig

  • Tilknyttet:
    Forfatter
    ved Göteborgs universitet
1 - 5 av 6 | Neste | Siste »