Cristin-resultat-ID: 1862986
Sist endret: 19. januar 2021, 10:53
NVI-rapporteringsår: 2020
Resultat
Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
2020

High-Fidelity Representation of Three-Hour Offshore Short-Crested Wave Field in the Fully Nonlinear Potential Flow Model REEF3D::FNPF

Bidragsytere:
  • Weizhi Wang
  • Csaba Pakozdi
  • Arun Kamath og
  • Hans Bihs

Bok

ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering - Volume 6B: Ocean Engineering
ISBN:
  • 978-0-7918-8438-6

Utgiver

The American Society of Mechanical Engineers (ASME)
NVI-nivå 1

Serie

International Conference on Offshore Mechanics and Arctic Engineering (OMAE) [proceedings]
ISSN 1523-651X
NVI-nivå 1

Om resultatet

Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
Publiseringsår: 2020
Volum: 39
Hefte: 6B
ISBN:
  • 978-0-7918-8438-6
Open Access

Klassifisering

Fagfelt (NPI)

Fagfelt: Konstruksjonsfag
- Fagområde: Realfag og teknologi

Beskrivelse Beskrivelse

Tittel

High-Fidelity Representation of Three-Hour Offshore Short-Crested Wave Field in the Fully Nonlinear Potential Flow Model REEF3D::FNPF

Sammendrag

Stochastic wave properties are crucial for the design of offshore structures. Short-crested seas are commonly seen at the sites of offshore structures, especially during storm events. A long time duration is required in order to obtain the statistical properties, which is challenging for numerical simulations because of the high demand of computational resources. In this scenario, a potential flow solver is ideal due to its computational efficiency. A procedure of producing accurate representation of short-crested sea states using the open-source fully nonlinear potential flow model REEF3D::FNPF is presented in the paper. The procedure examines the sensitivity of the resolutions in space and time as well as the arrangements of wave gauge arrays. A narrow band power spectrum and a mildly spreading directional spreading function are simulated, and an equal energy method is used to generate input waves to avoid phase-locking. REEF3D::FNPF solves the Laplace equation together with the boundary conditions using a finite difference method. A sigma grid is used in the vertical direction and the vertical grid clustering follows the principle of constant truncation error. High-order discretisation methods are implemented in space and time. Message passing interface is used for high performance computation using multiple processors. Three-hour simulations are performed in full-scale at a hypothetic offshore site with constant water depth. The significant wave height, peak period, kurtosis, skewness and ergodicity are examined in the numerically generated wave field. The stochastic wave properties in the numerical wave tank (NWT) using REEF3D::FNPF match the input wave conditions with high fidelity.

Bidragsytere

Widar Weizhi Wang

Bidragsyterens navn vises på dette resultatet som Weizhi Wang
  • Tilknyttet:
    Forfatter
    ved Institutt for bygg- og miljøteknikk ved Norges teknisk-naturvitenskapelige universitet

Csaba Pakozdi

  • Tilknyttet:
    Forfatter
    ved Skip og havkonstruksjoner ved SINTEF Ocean
Inaktiv cristin-person

Arun Mulky Kamath

Bidragsyterens navn vises på dette resultatet som Arun Kamath
  • Tilknyttet:
    Forfatter
    ved Institutt for bygg- og miljøteknikk ved Norges teknisk-naturvitenskapelige universitet

Hans Sebastian Bihs

Bidragsyterens navn vises på dette resultatet som Hans Bihs
  • Tilknyttet:
    Forfatter
    ved Institutt for bygg- og miljøteknikk ved Norges teknisk-naturvitenskapelige universitet
1 - 4 av 4

Resultatet er en del av Resultatet er en del av

ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering - Volume 6B: Ocean Engineering.

NN, NN. 2020, The American Society of Mechanical Engineers (ASME). Vitenskapelig antologi/Konferanseserie
1 - 1 av 1