Cristin-resultat-ID: 1902582
Sist endret: 7. april 2021, 09:03
Resultat
Vitenskapelig foredrag
2021

Better Automatic Interpretation of Cement Evaluation Logs through Feature Engineering

Bidragsytere:
  • Erlend Magnus Viggen
  • Lasse Løvstakken
  • Ioan Alexandru Merciu og
  • Svein-Erik Måsøy

Presentasjon

Navn på arrangementet: SPE/IADC Virtual International Drilling Conference and Exhibition
Sted: Online
Dato fra: 8. mars 2021
Dato til: 21. mars 2021

Arrangør:

Arrangørnavn: SPE/IADC

Om resultatet

Vitenskapelig foredrag
Publiseringsår: 2021

Klassifisering

Vitenskapsdisipliner

Petroleumsteknologi

Emneord

Akustikk • Ultralyd • Brønnlogging • Maskinlæring

Beskrivelse Beskrivelse

Tittel

Better Automatic Interpretation of Cement Evaluation Logs through Feature Engineering

Sammendrag

We build systems to automatically interpret cement evaluation logs using supervised machine learning (ML). Such systems can provide instant rough interpretations that may then be used as a basis for human interpretation. Here, we compare the performance of two approaches: A previously published approach based on deep convolutional neural networks (CNNs) that autonomously learn to extract features from well log data, and a feature-engineering approach where we use our own domain knowledge to extract features. We base this work on a dataset of around 60 km of well log data. Specialist interpreters have classified these logs according to the bond quality (6 ordinal classes) and hydraulic isolation (2 classes) of solids outside the casing. We train the ML systems to reproduce these reference interpretations in segments of 1 m length. The CNNs directly receive log data as a collection of 2D images and 1D curves. In the feature-engineering approach, we combine the extracted features with various classifiers. For bond quality, the CNNs’ interpretation exactly matches the reference 51.6% of the time. 88.5% of the time, it does not miss by more than one class. For hydraulic isolation, the CNNs match the reference 86.7% of the time. The best-performing feature-based classifier, which is an ensemble of individual classifiers, provides better results of 57.4%, 89.5%, and 88.9%, respectively. Our results indicate two main reasons why feature-based classifiers may perform particularly well on this task. First, there is some subjectivity inherent in the well log interpretations that are used to train and test ML systems. Second, well logs comprise many different and complex pieces of data. For these reasons, this dataset may be particularly liable to overfitting. This may favour approaches based on feature engineering, where we apply our domain knowledge to extract a few pieces of essential information from the data instead of leaving the job of understanding the data to an ML system that may misinterpret spurious patterns as generalisable. It may also favour simpler classifiers with less overfitting capacity. This article shows how petroleum researchers and engineers can implement automatic interpretation systems for cement evaluation logs using ML methods that are relatively easy to apply and deploy, with better results than an approach based on autonomous feature extraction. This approach could also be adapted for automatic interpretation of other types of well log data.

Bidragsytere

Erlend Magnus Viggen

  • Tilknyttet:
    Forfatter
    ved Institutt for sirkulasjon og bildediagnostikk ved Norges teknisk-naturvitenskapelige universitet

Lasse Løvstakken

  • Tilknyttet:
    Forfatter
    ved Institutt for sirkulasjon og bildediagnostikk ved Norges teknisk-naturvitenskapelige universitet

Ioan Alexandru Merciu

  • Tilknyttet:
    Forfatter
    ved Equinor

Svein-Erik Måsøy

  • Tilknyttet:
    Forfatter
    ved Institutt for sirkulasjon og bildediagnostikk ved Norges teknisk-naturvitenskapelige universitet
1 - 4 av 4