Cristin-resultat-ID: 1906441
Sist endret: 30. september 2021, 13:17
NVI-rapporteringsår: 2021
Resultat
Vitenskapelig artikkel
2021

Effective radiative forcing from emissions of reactive gases and aerosols-A multi-model comparison

Bidragsytere:
  • Gillian D. Thornhill
  • William J. Collins
  • Ryan J. Kramer
  • Dirk Jan Leo Oliviè
  • Ragnhild Bieltvedt Skeie
  • Fiona M. O'Connor
  • mfl.

Tidsskrift

Atmospheric Chemistry and Physics (ACP)
ISSN 1680-7316
e-ISSN 1680-7324
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2021
Volum: 21
Hefte: 2
Sider: 853 - 874
Open Access

Importkilder

Scopus-ID: 2-s2.0-85099760883

Beskrivelse Beskrivelse

Tittel

Effective radiative forcing from emissions of reactive gases and aerosols-A multi-model comparison

Sammendrag

This paper quantifies the pre-industrial (1850) to present-day (2014) effective radiative forcing (ERF) of anthropogenic emissions of NOX, volatile organic compounds (VOCs; including CO), SO2, NH3, black carbon, organic carbon, and concentrations of methane, N2O and ozone-depleting halocarbons, using CMIP6 models. Concentration and emission changes of reactive species can cause multiple changes in the composition of radiatively active species: tropospheric ozone, stratospheric ozone, stratospheric water vapour, secondary inorganic and organic aerosol, and methane. Where possible we break down the ERFs from each emitted species into the contributions from the composition changes. The ERFs are calculated for each of the models that participated in the AerChemMIP experiments as part of the CMIP6 project, where the relevant model output was available. The 1850 to 2014 multi-model mean ERFs (± standard deviations) are −1.03 ± 0.37 W m−2 for SO2 emissions, −0.25 ± 0.09 W m−2 for organic carbon (OC), 0.15 ± 0.17 W m−2 for black carbon (BC) and −0.07 ± 0.01 W m−2 for NH3. For the combined aerosols (in the piClim-aer experiment) it is −1.01 ± 0.25 W m−2. The multi-model means for the reactive well-mixed greenhouse gases (including any effects on ozone and aerosol chemistry) are 0.67 ± 0.17 W m−2 for methane (CH4), 0.26 ± 0.07 W m−2 for nitrous oxide (N2O) and 0.12 ± 0.2 W m−2 for ozone-depleting halocarbons (HC). Emissions of the ozone precursors nitrogen oxides (NOx), volatile organic compounds and both together (O3) lead to ERFs of 0.14 ± 0.13, 0.09 ± 0.14 and 0.20 ± 0.07 W m−2 respectively. The differences in ERFs calculated for the different models reflect differences in the complexity of their aerosol and chemistry schemes, especially in the case of methane where tropospheric chemistry captures increased forcing from ozone production.

Bidragsytere

Gillian D. Thornhill

  • Tilknyttet:
    Forfatter
    ved University of Reading

William J. Collins

  • Tilknyttet:
    Forfatter
    ved University of Reading

Ryan J. Kramer

  • Tilknyttet:
    Forfatter
    ved Universities Space Research Association
  • Tilknyttet:
    Forfatter
    ved NASA - National Aeronautics and Space Administration

Dirk Jan Leo Oliviè

  • Tilknyttet:
    Forfatter
    ved Meteorologisk institutt

Ragnhild Bieltvedt Skeie

  • Tilknyttet:
    Forfatter
    ved CICERO Senter for klimaforskning
1 - 5 av 30 | Neste | Siste »