Cristin-resultat-ID: 1925403
Sist endret: 15. mars 2022, 14:55
Resultat
Poster
2021

skweak: weak supervision made easy for NLP

Bidragsytere:
  • Pierre Lison
  • Jeremy Claude Barnes og
  • Aliaksandr Hubin

Presentasjon

Navn på arrangementet: ACL-IJCNLP 2021
Sted: virtual
Dato fra: 3. august 2021
Dato til: 4. august 2021

Arrangør:

Arrangørnavn: Association for Computational Linguistics

Om resultatet

Poster
Publiseringsår: 2021

Beskrivelse Beskrivelse

Tittel

skweak: weak supervision made easy for NLP

Sammendrag

We present skweak, a versatile, Python-based software toolkit enabling NLP developers to apply weak supervision to a wide range of NLP tasks. Weak supervision is an emerging machine learning paradigm based on a simple idea: instead of labelling data points by hand, we use labelling functions derived from domain knowledge to automatically obtain annotations for a given dataset. The resulting labels are then aggregated with a generative model that estimates the accuracy (and possible confusions) of each labelling function. The skweak toolkit makes it easy to implement a large spectrum of labelling functions (such as heuristics, gazetteers, neural models or linguistic constraints) on text data, apply them on a corpus, and aggregate their results in a fully unsupervised fashion. skweak is especially designed to facilitate the use of weak supervision for NLP tasks such as text classification and sequence labelling. We illustrate the use of skweak for NER and sentiment analysis. skweak is released under an open-source license and is available at https://github.com/NorskRegnesentral/skweak

Bidragsytere

Aktiv cristin-person

Pierre Lison

  • Tilknyttet:
    Forfatter
    ved Statistisk analyse, maskinlæring og bildeanalyse SAMBA ved Norsk Regnesentral

Jeremy Claude Barnes

  • Tilknyttet:
    Forfatter
    ved Språkteknologigruppen ved Universitetet i Oslo

Aliaksandr Hubin

  • Tilknyttet:
    Forfatter
    ved Statistisk analyse, maskinlæring og bildeanalyse SAMBA ved Norsk Regnesentral
  • Tilknyttet:
    Forfatter
    ved Statistikk og Data Science ved Universitetet i Oslo
1 - 3 av 3