Cristin-resultat-ID: 2085683
Sist endret: 19. januar 2023, 14:53
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

Flame Transfer Functions for Turbulent, Premixed, Ammonia-Hydrogen-Nitrogen-Air Flames

Bidragsytere:
  • Samuel Michael Wiseman
  • Andrea Gruber og
  • James Dawson

Tidsskrift

Journal of Engineering For Gas Turbines and Power
ISSN 0742-4795
e-ISSN 1528-8919
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Publisert online: 2022
Trykket: 2023
Volum: 145
Hefte: 3
Artikkelnummer: GTP-22-147

Importkilder

Scopus-ID: 2-s2.0-85144826142

Beskrivelse Beskrivelse

Tittel

Flame Transfer Functions for Turbulent, Premixed, Ammonia-Hydrogen-Nitrogen-Air Flames

Sammendrag

Ammonia is a promising hydrogen and energy carrier but also a challenging fuel to use in gas turbines, due to its low flame speed, limited flammability range, and the production of NOx from fuel-bound nitrogen. Previous experimental and theoretical work has demonstrated that partially-dissociated ammonia can match many of the laminar flame properties of methane flames. Among the remaining concerns pertaining to the use of NH3/H2/N2 blends in gas turbines is their thermoacoustic behavior. This paper presents the first measurements of flame transfer functions (FTFs) for turbulent, premixed, NH3/H2/N2-air flames and compares them to CH4-air flames that have a similar unstretched laminar flame speed and adiabatic flame temperature. FTFs for NH3/H2/N2 blends were found to have a lower gain than CH4 FTFs at low frequencies. However, the cut-off frequency was found to be greater, due to a shorter flame length. For both CH4 flames and NH3/H2/N2 flames the confinement diameter was found to have a strong influence on peak gain values. Chemiluminescence resolved along the longitudinal direction shows a suppression of fluctuations when the flame first interacts with the wall followed by a subsequent recovery, but with a significant phase shift. Nevertheless, simple Strouhal number scalings based on the flame length and reactant bulk velocity at the dump plane result in a reasonable collapse of the FTF cut-off frequency and phase curves.

Bidragsytere

Samuel Michael Wiseman

  • Tilknyttet:
    Forfatter
    ved Institutt for energi- og prosessteknikk ved Norges teknisk-naturvitenskapelige universitet
Aktiv cristin-person

Andrea Gruber

  • Tilknyttet:
    Forfatter
    ved Termisk energi ved SINTEF Energi AS

James Richard Dawson

Bidragsyterens navn vises på dette resultatet som James Dawson
  • Tilknyttet:
    Forfatter
    ved Institutt for energi- og prosessteknikk ved Norges teknisk-naturvitenskapelige universitet
1 - 3 av 3