Cristin-resultat-ID: 945902
Sist endret: 19. mars 2013, 08:10
NVI-rapporteringsår: 2012
Resultat
Vitenskapelig artikkel
2012

Kinetic Analysis and Upper Bound of Ethylene Yield of Gas Phase Oxidative Dehydrogenation of Ethane to Ethylene

Bidragsytere:
  • Hassan Jamil Dar
  • Sandro Usseglio Nanot
  • Klaus-Joachim Jens
  • Hugo Atle Jakobsen
  • Elisabeth Tangstad og
  • De Chen

Tidsskrift

Industrial & Engineering Chemistry Research
ISSN 0888-5885
e-ISSN 1520-5045
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2012
Volum: 51
Hefte: 32
Sider: 10571 - 10585

Importkilder

Isi-ID: 000307488400007

Beskrivelse Beskrivelse

Tittel

Kinetic Analysis and Upper Bound of Ethylene Yield of Gas Phase Oxidative Dehydrogenation of Ethane to Ethylene

Sammendrag

The gas phase oxidative dehydrogenation of ethane (ODHE) has been investigated, both experimentally and through kinetic modeling and simulation, as a potential alternative to steam cracking for ethylene production. The experiments were carried out at isothermal conditions and atmospheric pressure by using a quartz tube flow reactor (2 mm i.d.) with a volume of 0.110 mL. A gas phase kinetic model with 134 elementary reaction steps and 25 species was adopted from the literature, and the parameters were adjusted by best fitting of the experimental data based on the sensitivity analysis of the kinetic model. Further, the model was reduced based on the contribution analysis and a kinetic model of 41 steps involving 23 gas phase species was established. The kinetic analysis of the gas phase ODHE reaction is performed by means of the established kinetic model to provide the reaction pathways for ethylene and other byproducts formation, providing a better understanding of the radical chemistry for limiting the ethylene selectivity. The reactor simulations are performed under different conditions such as C2H6/O2 ratios and temperatures to search for the upper bound of the ethylene yield in the gas phase ODHE. An upper bound ethylene yield of 53.5% (C2H4 selectivity, 65.4%) is predicted at 1173 K and C2H6/O2 = 3.33 with a residence time of 0.1 s at atmospheric pressure.

Bidragsytere

Hassan Jamil Dar

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Sandro Usseglio Nanot

  • Tilknyttet:
    Forfatter
    ved Materialer og nanoteknologi ved SINTEF AS

Klaus-Joachim Jens

  • Tilknyttet:
    Forfatter
    ved Institutt for prosess-, energi- og miljøteknologi ved Universitetet i Sørøst-Norge

Hugo Atle Jakobsen

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Elisabeth Tangstad

  • Tilknyttet:
    Forfatter
    ved Prosessteknologi ved SINTEF AS
1 - 5 av 6 | Neste | Siste »