Cristin-resultat-ID: 1135957
Sist endret: 30. oktober 2017, 11:07
NVI-rapporteringsår: 2014
Resultat
Vitenskapelig artikkel
2014

Multi-criteria analyses of two solvent and one low-temperature concepts for acid gas removal from natural gas

Bidragsytere:
  • Simon Roussanaly
  • Rahul Anantharaman og
  • Karl Lindqvist

Tidsskrift

Journal of Natural Gas Science and Engineering
ISSN 1875-5100
e-ISSN 2212-3865
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2014
Volum: 20
Sider: 38 - 49
Open Access

Importkilder

Scopus-ID: 2-s2.0-84903129980

Beskrivelse Beskrivelse

Tittel

Multi-criteria analyses of two solvent and one low-temperature concepts for acid gas removal from natural gas

Sammendrag

This paper evaluates three acid gas removal concepts studied in the project “A Green Sea”. Two solvent concepts (aMDEA/MDEA and Selexol) and a low-temperature concept are modelled and assessed, taking different raw natural gases and natural gas product requirements into consideration. The analyses and comparisons of the concepts and cases consider nine criteria in order to include both energy efficiencies and compactness. The assessment shows that acid gas removal using aMDEA/MDEA technology seems to perform well in terms of energy efficiency, volume and weight for low CO2 removal. However, for high CO2 content or strong polishing requirements, the chemical solvent technology loses its efficiency in terms of weight and volume. The assessment shows that the Selexol concept is an inefficient option in terms of energy efficiency, volume and weight, especially when large quantities of CO2 have to be removed from the gas stream. The assessment also shows that the low-temperature technology can be a compact and energy-efficient option, both in the case of strong polishing requirements and high bulk removal of CO2. However, the higher the amount of CO2 to be removed, the less energy efficient is the low-temperature technology. The case evaluation underlines the fact that the aMDEA/MDEA solvent concept exhibits the best or close to the best key performance indicators (KPIs) for all parameters for the RNG1Pipe case (raw natural gas specification 1 to pipeline quality specification) and therefore appears to be the best technology option. For this case, the two other technologies are slightly less energy efficient than the aMDEA/MDEA, but both are significantly less compact. For the RNG1 LNG (raw natural gas specification 1 to LNG quality specification) case, the aMDEA/MDEA and low-temperature concepts have similar KPIs. The chemical solvent technology, however, is slightly more energy efficient and compact and would therefore be preferred for the RNG1 LNG case. Finally, the RNG2 Pipe (raw natural gas specification 2 to pipeline quality specification) case shows that the low-temperature technology can be a compact option for acid gas removal, which is a critical factor in the case of offshore applications for both the equipment costs and the weight constraints on the platform. Despite its lower energy efficiency, it is therefore likely that the low-temperature technology will be selected in the RNG2 Pipe case. This choice is strengthened by some regulations which recommend that solvents such as MDEA and aMDEA should be phased out for offshore applications, as is seen, e.g. in Norway. In addition, if stricter regulations are also enforced for onshore applications, this might also argue in favour of the low-temperature technology or other chemical solvents that are otherwise less efficient than aMDEA/MDEA. Finally, the potential of hybrid concepts is discussed and suggested for future works, in order to combine the advantages of the different technologies, such as the energy-efficient performances of the aMDEA/MDEA concept and the compactness of the low-temperature concept.

Bidragsytere

Simon Nathanael Roussanaly

Bidragsyterens navn vises på dette resultatet som Simon Roussanaly
  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS

Rahul Anantharaman

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS

Karl Erik Artur Lindqvist

Bidragsyterens navn vises på dette resultatet som Karl Lindqvist
  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS
1 - 3 av 3