Cristin-resultat-ID: 1139116
Sist endret: 19. juni 2014, 13:09
Resultat
Vitenskapelig foredrag
2013

A Real-Time Discharge Modelling and Environmental Monitoring System for Drilling Operations

Bidragsytere:
  • Ute Brönner
  • Raymond Nepstad
  • Grim Eidnes
  • Petter Rønningen
  • Henrik Rye
  • Morten Alver
  • mfl.

Presentasjon

Navn på arrangementet: European HSE Conference and Exhibition, 16-18 April, London, United Kingdom
Sted: London
Dato fra: 16. april 2013
Dato til: 18. april 2013

Arrangør:

Arrangørnavn: Society of Petroleum Engineers

Om resultatet

Vitenskapelig foredrag
Publiseringsår: 2013

Klassifisering

Vitenskapsdisipliner

Informasjons- og kommunikasjonsvitenskap

Emneord

Numerisk modellering • Sanntidssystemer • Beslutningsstøtte

Beskrivelse Beskrivelse

Tittel

A Real-Time Discharge Modelling and Environmental Monitoring System for Drilling Operations

Sammendrag

We present a novel approach for real-time environmental modelling and monitoring of oil drilling operations. By combining live ocean sensor data, hydrodynamic simulation and discharge modelling in an integrated software solution, an accurate spatially-resolved picture of drilling discharge transport and fate can be presented to the user, in real-time. The availability of such information is essential for safe operations in sensitive areas. A field trial of the present solution has been conducted together with Statoil in the Norwegian Sea. Live hydrodynamic data was provided by a combined spar buoy/ADCP platform, and communicated to the software system via satellite. As a backup solution, an operational hydrodynamic model (SINMOD) was set up to produce short-range forecasts (nowcasts). The hydrodynamic data was automatically incorporated by the fate and transport model (DREAM), and simulation results were distilled and presented to the user on a simple web page frontend. This allowed several independent stakeholder parties to inspect the results simultaneously. During the development and testing of the real-time solution, and also from the subsequent field test, experience and several key insights were gained, pointing to directions of future development and research. Among these we can mention: an automated system for importing updated drilling schedule data, direct assimilation of sensor data into the hydrodynamic model, improved robustness and reliability of the buoy platform, and extensions including several user interfaces, tailored to specific user groups (i.e. platform operators, environmental coordinators, etc.). Through the real-time combination of measurements and models of sufficiently fine-grained resolution we established a viable information platform for decision making during drilling operations. Thus, the present solution and its further development are important contributions to increased environmental safety when operating in sensitive areas.

Bidragsytere

Ute Brönner

  • Tilknyttet:
    Forfatter
    ved Klima og miljø ved SINTEF Ocean

Raymond Nepstad

  • Tilknyttet:
    Forfatter
    ved Klima og miljø ved SINTEF Ocean

Grim Eidnes

  • Tilknyttet:
    Forfatter
    ved Klima og miljø ved SINTEF Ocean

Petter Rønningen

  • Tilknyttet:
    Forfatter
    ved Klima og miljø ved SINTEF Ocean

Henrik Rye

  • Tilknyttet:
    Forfatter
    ved Klima og miljø ved SINTEF Ocean
1 - 5 av 7 | Neste | Siste »