Cristin-resultat-ID: 1161735
Sist endret: 2. juni 2017, 13:35
NVI-rapporteringsår: 2014
Resultat
Vitenskapelig artikkel
2014

A computational pipeline for quantification of mouse myocardial stiffness parameters

Bidragsytere:
  • Øyvind Nordbø
  • P. Lamata
  • Sander Land
  • Steven A. Niederer
  • Jan Magnus Aronsen
  • William Edward Louch
  • mfl.

Tidsskrift

Computers in Biology and Medicine
ISSN 0010-4825
e-ISSN 1879-0534
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2014
Publisert online: 2014
Trykket: 2014
Volum: 53
Sider: 65 - 75
Open Access

Importkilder

Scopus-ID: 2-s2.0-84906095678

Beskrivelse Beskrivelse

Tittel

A computational pipeline for quantification of mouse myocardial stiffness parameters

Sammendrag

The mouse is an important model for theoretical–experimental cardiac research, and biophysically based whole organ models of the mouse heart are now within reach. However, the passive material properties of mouse myocardium have not been much studied. We present an experimental setup and associated computational pipeline to quantify these stiffness properties. A mouse heart was excised and the left ventricle experimentally inflated from 0 to 1.44 kPa in eleven steps, and the resulting deformation was estimated by echocardiography and speckle tracking. An in silico counterpart to this experiment was built using finite element methods and data on ventricular tissue microstructure from diffusion tensor MRI. This model assumed a hyperelastic, transversely isotropic material law to describe the force–deformation relationship, and was simulated for many parameter scenarios, covering the relevant range of parameter space. To identify well-fitting parameter scenarios, we compared experimental and simulated outcomes across the whole range of pressures, based partly on gross phenotypes (volume, elastic energy, and short- and long-axis diameter), and partly on node positions in the geometrical mesh. This identified a narrow region of experimentally compatible values of the material parameters. Estimation turned out to be more precise when based on changes in gross phenotypes, compared to the prevailing practice of using displacements of the material points. We conclude that the presented experimental setup and computational pipeline is a viable method that deserves wider application.

Bidragsytere

Øyvind Nordbø

  • Tilknyttet:
    Forfatter
    ved Realfag og teknologi ved Norges miljø- og biovitenskapelige universitet

P. Lamata

  • Tilknyttet:
    Forfatter
    ved King's College London

Sander Land

  • Tilknyttet:
    Forfatter
    ved King's College London

Steven A. Niederer

  • Tilknyttet:
    Forfatter
    ved King's College London

Jan Magnus Aronsen

  • Tilknyttet:
    Forfatter
    ved Inst. eksperimentell med. forsk, Ullevål ved Oslo universitetssykehus HF
  • Tilknyttet:
    Forfatter
    ved Oslo Nye Høyskole
  • Tilknyttet:
    Forfatter
    ved Institutt for eksperimentell medisinsk forskning ved Universitetet i Oslo
1 - 5 av 17 | Neste | Siste »