Cristin-resultat-ID: 1191438
Sist endret: 12. januar 2016, 13:06
NVI-rapporteringsår: 2014
Resultat
Vitenskapelig artikkel
2014

A Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split

Bidragsytere:
  • Tom Lyche og
  • Agnar Georg Peder Muntingh

Tidsskrift

Computer Aided Geometric Design
ISSN 0167-8396
e-ISSN 1879-2332
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2014
Publisert online: 2014
Trykket: 2014
Volum: 31
Hefte: 7-8
Sider: 464 - 474
Open Access

Importkilder

Scopus-ID: 2-s2.0-84908204511

Beskrivelse Beskrivelse

Tittel

A Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split

Sammendrag

In order to construct a C1C1-quadratic spline over an arbitrary triangulation, one can split each triangle into 12 subtriangles, resulting in a finer triangulation known as the Powell–Sabin 12-split. It has been shown previously that the corresponding spline surface can be plotted quickly by means of a Hermite subdivision scheme (Dyn and Lyche, 1998). In this paper we introduce a nodal macro-element on the 12-split for the space of quintic splines that are locally C3C3 and globally C2C2. For quickly evaluating any such spline, a Hermite subdivision scheme is derived, implemented, and tested in the computer algebra system Sage. Using the available first derivatives for Phong shading, visually appealing plots can be generated after just a couple of refinements

Bidragsytere

Aktiv cristin-person

Tom Johan Lyche

Bidragsyterens navn vises på dette resultatet som Tom Lyche
  • Tilknyttet:
    Forfatter
    ved Matematisk institutt ved Universitetet i Oslo

Agnar Georg Peder Muntingh

  • Tilknyttet:
    Forfatter
    ved Mathematics and Cybernetics ved SINTEF AS
1 - 2 av 2