Cristin-resultat-ID: 1248887
Sist endret: 11. august 2015, 15:49
NVI-rapporteringsår: 2015
Resultat
Vitenskapelig artikkel
2015

An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study

Bidragsytere:
  • Angelica Orsi
  • Ole Edvard Kongstein
  • Philip Hamilton
  • Anders Ødegård
  • Ingeborg-Helene Svenum og
  • Kevin Cooke

Tidsskrift

Journal of Power Sources
ISSN 0378-7753
e-ISSN 1873-2755
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2015
Volum: 285
Sider: 530 - 537

Importkilder

Scopus-ID: 2-s2.0-84925711182

Beskrivelse Beskrivelse

Tittel

An investigation of the typical corrosion parameters used to test polymer electrolyte fuel cell bipolar plate coatings, with titanium nitride coated stainless steel as a case study

Sammendrag

Stainless steel bipolar plates (BPP) for polymer electrolyte membrane fuel cells (PEMFCs) have good manufacturability, durability and low costs, but inadequate corrosion resistance and elevated interfacial contact resistance (ICR) in the fuel cell environment. Thin film coatings of titanium nitride (TiN) of 1 μm in thickness, were deposited by means of physical vapour deposition (PVD) process on to stainless steel (SS) 316L substrates and were evaluated, in a series of tests, for their level of corrosion protection and ICR. In the ex-situ corrosion tests, variables such as applied potential, experimental duration and pH of the sulphate electrolyte at 80 °C were altered. The ICR values were found to increase after exposure to greater applied potentials and electrolytes of a higher pH. In terms of experimental duration, the ICR increased most rapidly at the beginning of each experiment. It was also found that the oxidation of TiN was accelerated after exposure to electrolytes of a higher pH. When coated BPPs were incorporated into an accelerated fuel cell test, the degradation of the fuel cell cathode resembled the plates that were tested at the highest anodic potential (1.4 VSHE).

Bidragsytere

Angelica Orsi

  • Tilknyttet:
    Forfatter
    ved University of St. Andrews

Ole Edvard Kongstein

  • Tilknyttet:
    Forfatter
    ved Materialer og nanoteknologi ved SINTEF AS

Philip Hamilton

  • Tilknyttet:
    Forfatter
    ved Storbritannia og Nord-Irland

Anders Ødegård

  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS

Ingeborg-Helene Svenum

  • Tilknyttet:
    Forfatter
    ved Materialer og nanoteknologi ved SINTEF AS
1 - 5 av 6 | Neste | Siste »