Cristin-resultat-ID: 1249045
Sist endret: 20. oktober 2015, 14:40
NVI-rapporteringsår: 2015
Resultat
Vitenskapelig artikkel
2015

Doping strategies for increased oxygen permeability of CaTiO3 based membranes

Bidragsytere:
  • Jonathan M. Polfus
  • Wen Xing
  • Martin Fleissner Sunding
  • Sidsel Meli Hanetho
  • Paul Inge Dahl
  • Yngve Larring
  • mfl.

Tidsskrift

Journal of Membrane Science
ISSN 0376-7388
e-ISSN 1873-3123
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2015
Volum: 482
Sider: 137 - 143
Open Access

Importkilder

Scopus-ID: 2-s2.0-84924872609

Beskrivelse Beskrivelse

Tittel

Doping strategies for increased oxygen permeability of CaTiO3 based membranes

Sammendrag

Oxygen permeation measurements are performed on dense samples of CaTi0.85Fe0.15O3−δ, CaTi0.75Fe0.15Mg0.05O3−δ and CaTi0.75Fe0.15Mn0.10O3−δ in combination with density functional theory (DFT) calculations and X-ray photoelectron spectroscopy (XPS) in order to assess Mg and Mn as dopants for improving the O2 permeability of CaTi1−xFexO3−δ based oxygen separation membranes. The oxygen permeation measurements were carried out at temperatures ranging between 700 and 1000 °C with feed side oxygen partial pressures between 0.01 and 1 bar. The O2 permeability was experimentally found to be highest for the Mn doped sample over the whole temperature range, reaching 4.2×10−3 ml min−1 cm−1 at 900 °C and 0.21 bar O2 in the feed which corresponds to a 40% increase over the Fe-doped sample and similar to reported values for x=0.2. While the O2 permeability of the Mg doped sample was also higher than the Fe-doped sample, it approached that of the Fe-doped sample above 900 °C. According to the DFT calculations, Mn introduces electronic states within the band gap and will predominately exist in the effectively negative charge state, as indicated by XPS measurements. Mn may therefore improve the ionic and electronic conductivity of CTF based membranes. The results are discussed in terms of the limiting species for ambipolar transport and O2 permeability, i.e., oxygen vacancies and electronic charge carriers.

Bidragsytere

Jonathan Polfus

Bidragsyterens navn vises på dette resultatet som Jonathan M. Polfus
  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS
Aktiv cristin-person

Wen Xing

  • Tilknyttet:
    Forfatter
    ved SINTEF Industri ved SINTEF AS

Martin Fleissner Sunding

  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS

Sidsel Meli Hanetho

  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS

Paul Inge Dahl

  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS
1 - 5 av 8 | Neste | Siste »