Cristin-resultat-ID: 1263889
Sist endret: 20. oktober 2015, 09:32
NVI-rapporteringsår: 2015
Resultat
Vitenskapelig artikkel
2015

Single-cycle coherent terahertz-pulse propagation in rigid-rotor molecular media

Bidragsytere:
  • Robert Marskar og
  • Ulf Lennart Österberg

Tidsskrift

Physical Review A. Atomic, Molecular, and Optical Physics (PRA)
ISSN 1050-2947
e-ISSN 1094-1622
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2015
Publisert online: 2015
Trykket: 2015
Volum: 92
Hefte: 2
Artikkelnummer: 023843

Importkilder

Scopus-ID: 2-s2.0-84940784577

Beskrivelse Beskrivelse

Tittel

Single-cycle coherent terahertz-pulse propagation in rigid-rotor molecular media

Sammendrag

We theoretically analyze linear and nonlinear coherent propagation of linearly polarized, plane-wave, resonant single-cycle terahertz pulses through spatially extended rigid-rotor molecular media. Our model incorporates mixed state medium preparation, nonperturbative nonlinearities, saturation, coherence, memory effects, and propagation, but ignores the effects of damping. Explicit solutions are reported in the linear propagation regime. These solutions are the multilevel superposition of linear, single-cycle 0π pulses, and appear as temporal beats in the time domain. For media initially in thermal equilibrium, the pulse and molecular beats are dispersive and broaden temporally with increased propagation distance. In the simplified limit of equal rotational line strength (an idealized situation), the emitted impulses are exact temporal copies of the input pulse. An efficient, scalable computational method for solving the reduced multilevel Maxwell-Bloch equations for molecular media is reported. This method is based on a standard differential method for the propagation equation together with an operator splitting method for the Bloch equations. It invokes neither the slowly varying envelope (SVEA) or rotating wave approximations (RWA), and incorporates a large number of possible energy eigenstates (we solve for 7744 levels). Case studies of nonlinear single-cycle pulse propagation are then provided by means of computer solutions. In the nonlinear regime, we observe strong molecular orientations and suppression of the pulse and orientational revivals predicted by linear theory. For sufficiently strong pulses, coherent bleaching effects lead to increased transmission of the driving pulse, which also bears signs of self-modulation and carrier-shock formation. ©2015 American Physical Society.

Bidragsytere

Robert Marskar

  • Tilknyttet:
    Forfatter
    ved Elkraftteknologi ved SINTEF Energi AS
  • Tilknyttet:
    Forfatter
    ved Institutt for elektroniske systemer ved Norges teknisk-naturvitenskapelige universitet

Ulf Lennart Österberg

  • Tilknyttet:
    Forfatter
    ved Institutt for elektroniske systemer ved Norges teknisk-naturvitenskapelige universitet
1 - 2 av 2