Cristin-resultat-ID: 1283856
Sist endret: 31. mai 2017, 08:53
NVI-rapporteringsår: 2015
Resultat
Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
2015

Hydrodynamic modelling of large-diameter bottom-fixed offshore wind turbines

Bidragsytere:
  • Erin Elizabeth Bachynski og
  • Harald Ormberg

Bok

Proceedings ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering Volume 9: Ocean Renewable Energy
ISBN:
  • 978-0-7918-5657-4

Utgiver

The American Society of Mechanical Engineers (ASME)
NVI-nivå 1

Serie

International Conference on Offshore Mechanics and Arctic Engineering (OMAE) [proceedings]
ISSN 1523-651X
NVI-nivå 1

Om resultatet

Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
Publiseringsår: 2015
Volum: 2015
Hefte: 9
Antall sider: 9
ISBN:
  • 978-0-7918-5657-4

Klassifisering

Fagfelt (NPI)

Fagfelt: Konstruksjonsfag
- Fagområde: Realfag og teknologi

Beskrivelse Beskrivelse

Tittel

Hydrodynamic modelling of large-diameter bottom-fixed offshore wind turbines

Sammendrag

For shallow and intermediate water depths, large monopile foundations are considered to be promising with respect to the levelized cost of energy (LCOE) of offshore wind turbines. In order to reduce the LCOE by structural optimization and de-risk the resulting designs, the hydrodynamic loads must be computed efficiently and accurately. Three efficient methods for computing hydrodynamic loads are considered here: Morison’s equation with 1) undisturbed linear wave kinematics or 2) undisturbed second order Stokes wave kinematics, or 3) the MacCamy-Fuchs model, which is able to account for diffraction in short waves. Two reference turbines are considered in a simplified range of environmental conditions. For fatigue limit state calculations, accounting for diffraction effects was found to generally increase the estimated lifetime of the structure, particularly the tower. The importance of diffraction depends on the environmental conditions and the structure. For the case study of the NREL 5 MW design, the effect could be up to 10 % for the tower base and 2 % for the monopile under the mudline. The inclusion of second order wave kinematics did not have a large effect on the fatigue calculations, but had a significant impact on the structural loads in ultimate limit state conditions. For the NREL 5 MW design, a 30 % increase in the maximum bending moment under the mudline could be attributed to the second order wave kinematics; a 7 % increase was seen for the DTU 10 MW design.

Bidragsytere

Erin Elizabeth Bachynski-Polic

Bidragsyterens navn vises på dette resultatet som Erin Elizabeth Bachynski
  • Tilknyttet:
    Forfatter
    ved Energi og transport ved SINTEF Ocean

Harald Ormberg

  • Tilknyttet:
    Forfatter
    ved Energi og transport ved SINTEF Ocean
1 - 2 av 2

Resultatet er en del av Resultatet er en del av

Proceedings ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering Volume 9: Ocean Renewable Energy.

NN, .. 2015, The American Society of Mechanical Engineers (ASME). Vitenskapelig antologi/Konferanseserie
1 - 1 av 1