Cristin-resultat-ID: 1284358
Sist endret: 30. oktober 2017, 11:20
NVI-rapporteringsår: 2015
Resultat
Vitenskapelig artikkel
2015

Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing

Bidragsytere:
  • Antonio Alvaro
  • Ingvild Julie Thue Jensen
  • Nousha Kheradmand
  • Ole Martin Løvvik og
  • Vigdis Olden

Tidsskrift

International Journal of Hydrogen Energy
ISSN 0360-3199
e-ISSN 1879-3487
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2015
Publisert online: 2015
Volum: 40
Hefte: 47
Sider: 16892 - 16900

Importkilder

Scopus-ID: 2-s2.0-84936806246

Beskrivelse Beskrivelse

Tittel

Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing

Sammendrag

Hydrogen (H) can have dramatic consequences on material properties, especially by reducing the fracture toughness. Degradation by H initiates through mechanisms at the nano-scale, and is normally not detectable prior to the final leakage or component fracture. Computational techniques are therefore being developed in order to provide both a wider understanding of the phenomenon and engineering tools for prediction of materials susceptibility toward hydrogen embrittlement. This work presents a preliminary study for the development of a novel computational approach in which density functional theory (DFT), nanoscale experiments and finite element (FE) modeling are combined and interrelated in order to improve the understanding of hydrogen induced intergranular cracking. Two low angle and low coincidence grain boundaries types have been considered: Σ3 and Σ5. Density Functional Theory has been applied to investigate the influence of an increasing number of H atoms on the cohesive strength of these grain boundaries in pure Nickel. This provided relations between the number of H atoms (coverage of the grain boundary) and the cohesive strength, which is further applied in cohesive zone FE modeling of a triangular nanometer sized fracture mechanics cantilever beam. For verification of the model such specimens will be tested experimentally both with and without in-situ electrochemical charging. The simulation results show that the model is suitable for describing the combined effect of grain boundary misorientation and the reduced cohesive energy due to hydrogen on the grain boundary propensity to cleave.

Bidragsytere

Antonio Alvaro

  • Tilknyttet:
    Forfatter
    ved Materialer og nanoteknologi ved SINTEF AS

Ingvild Julie Thue Jensen

  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS

Nousha Kheradmand

  • Tilknyttet:
    Forfatter
    ved Institutt for maskinteknikk og produksjon ved Norges teknisk-naturvitenskapelige universitet

Ole Martin Løvvik

  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS
Aktiv cristin-person

Vigdis Olden

  • Tilknyttet:
    Forfatter
    ved Materialer og nanoteknologi ved SINTEF AS
1 - 5 av 5