Cristin-resultat-ID: 1320395
Sist endret: 27. oktober 2016, 00:31
NVI-rapporteringsår: 2016
Resultat
Vitenskapelig artikkel
2016

Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths

Bidragsytere:
  • Johanne Egge Rinholm
  • Koen Gerard Alois Vervaeke
  • Michael Tadross
  • Ariana Tkachuk
  • Benjamin Kopek
  • Timothy A Brown
  • mfl.

Tidsskrift

Glia
ISSN 0894-1491
e-ISSN 1098-1136
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2016
Publisert online: 2016
Volum: 64
Hefte: 5
Sider: 810 - 825

Importkilder

Scopus-ID: 2-s2.0-84955602611

Beskrivelse Beskrivelse

Tittel

Movement and structure of mitochondria in oligodendrocytes and their myelin sheaths

Sammendrag

Mitochondria play several crucial roles in the life of oligodendrocytes. During development of the myelin sheath they are essential providers of carbon skeletons and energy for lipid synthesis. During normal brain function their consumption of pyruvate will be a key determinant of how much lactate is available for oligodendrocytes to export to power axonal function. Finally, during calcium-overload induced pathology, as occurs in ischemia, mitochondria may buffer calcium or induce apoptosis. Despite their important functions, very little is known of the properties of oligodendrocyte mitochondria, and mitochondria have never been observed in the myelin sheaths. We have now used targeted expression of fluorescent mitochondrial markers to characterize the location and movement of mitochondria within oligodendrocytes. We show for the first time that mitochondria are able to enter and move within the myelin sheath. Within the myelin sheath the highest number of mitochondria was in the cytoplasmic ridges along the sheath. Mitochondria moved more slowly than in neurons and, in contrast to their behavior in neurons and astrocytes, their movement was increased rather than inhibited by glutamate activating NMDA receptors. By electron microscopy we show that myelin sheath mitochondria have a low surface area of cristae, which suggests a low ATP production. These data specify fundamental properties of the oxidative phosphorylation system in oligodendrocytes, the glial cells that enhance cognition by speeding action potential propagation and provide metabolic support to axons.

Bidragsytere

Johanne Egge Rinholm

  • Tilknyttet:
    Forfatter
    ved Institutt for oral biologi ved Universitetet i Oslo
  • Tilknyttet:
    Forfatter
    ved Howard Hughes Medical Institute
  • Tilknyttet:
    Forfatter
    ved Anatomi: Synaptisk nevrokjemi ved Universitetet i Oslo

Koen Gerard Alois Vervaeke

  • Tilknyttet:
    Forfatter
    ved Howard Hughes Medical Institute
  • Tilknyttet:
    Forfatter
    ved Gruppe for Neural Computation ved Universitetet i Oslo

Michael Tadross

  • Tilknyttet:
    Forfatter
    ved Howard Hughes Medical Institute

Ariana Tkachuk

  • Tilknyttet:
    Forfatter
    ved Howard Hughes Medical Institute

Benjamin Kopek

  • Tilknyttet:
    Forfatter
    ved Howard Hughes Medical Institute
1 - 5 av 8 | Neste | Siste »