Cristin-resultat-ID: 1348073
Sist endret: 17. januar 2018, 15:42
NVI-rapporteringsår: 2016
Resultat
Vitenskapelig artikkel
2016

Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb

Bidragsytere:
  • Kristian Berland
  • Xin Song
  • Patricia Carvalho
  • Clas Persson
  • Terje Finstad og
  • Ole Martin Løvvik

Tidsskrift

Journal of Applied Physics
ISSN 0021-8979
e-ISSN 1089-7550
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2016
Publisert online: 2016
Trykket: 2016
Volum: 119
Hefte: 12
Artikkelnummer: 125103
Open Access

Importkilder

Scopus-ID: 2-s2.0-85014796522

Beskrivelse Beskrivelse

Tittel

Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb

Sammendrag

Energy filtering has been suggested by many authors as a means to improve thermoelectric properties. The idea is to filter away low-energy charge carriers in order to increase Seebeck coefficient without compromising electronic conductivity. This concept was investigated in the present paper for a specific material (ZnSb) by a combination of first-principles atomic-scale calculations, Boltzmann transport theory, and experimental studies of the same system. The potential of filtering in this material was first quantified, and it was as an example found that the power factor could be enhanced by an order of magnitude when the filter barrier height was 0.5 eV. Measured values of the Hall carrier concentration in bulk ZnSb were then used to calibrate the transport calculations, and nanostructured ZnSb with average grain size around 70 nm was processed to achieve filtering as suggested previously in the literature. Various scattering mechanisms were employed in the transport calculations and compared with the measured transport properties in nanostructured ZnSb as a function of temperature. Reasonable correspondence between theory and experiment could be achieved when a combination of constant lifetime scattering and energy filtering with a 0.25 eV barrier was employed. However, the difference between bulk and nanostructured samples was not sufficient to justify the introduction of an energy filtering mechanism. The reasons for this and possibilities to achieve filtering were discussed in the paper.

Bidragsytere

Kristian Berland

  • Tilknyttet:
    Forfatter
    ved Senter for materialvitenskap og nanoteknologi ved Universitetet i Oslo
  • Tilknyttet:
    Forfatter
    ved Fysisk institutt ved Universitetet i Oslo

Xin Song

  • Tilknyttet:
    Forfatter
    ved Fysisk institutt ved Universitetet i Oslo

Patricia A. Carvalho

Bidragsyterens navn vises på dette resultatet som Patricia Carvalho
  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS

Clas Persson

  • Tilknyttet:
    Forfatter
    ved Fysisk institutt ved Universitetet i Oslo
  • Tilknyttet:
    Forfatter
    ved Senter for materialvitenskap og nanoteknologi ved Universitetet i Oslo

Terje Gunnar Finstad

Bidragsyterens navn vises på dette resultatet som Terje Finstad
  • Tilknyttet:
    Forfatter
    ved Senter for materialvitenskap og nanoteknologi ved Universitetet i Oslo
  • Tilknyttet:
    Forfatter
    ved Fysisk institutt ved Universitetet i Oslo
1 - 5 av 6 | Neste | Siste »