Cristin-resultat-ID: 1380235
Sist endret: 26. oktober 2017, 11:00
NVI-rapporteringsår: 2016
Resultat
Vitenskapelig artikkel
2016

Modelling of binary fluidized bed reactors for the sorption-enhanced steam methane reforming process

Bidragsytere:
  • Zhongxi Chao
  • Yuanwei Zhang
  • Yuefa Wang
  • Jana Poplsteinova Jakobsen og
  • Hugo Atle Jakobsen

Tidsskrift

Canadian Journal of Chemical Engineering
ISSN 0008-4034
e-ISSN 1939-019X
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2016
Publisert online: 2016
Trykket: 2017
Volum: 95
Hefte: 1
Sider: 157 - 169

Importkilder

Scopus-ID: 2-s2.0-84983681774

Beskrivelse Beskrivelse

Tittel

Modelling of binary fluidized bed reactors for the sorption-enhanced steam methane reforming process

Sammendrag

A 1 m high laboratory-scale and a 4 m high industrial-scale sorption-enhanced steam methane reforming (SE-SMR) fluidized bed reactor were simulated using a three-fluid model. The performance of the SE-SMR process was compared with the steam methane reforming (SMR) process. The influences of the superficial gas velocities and the solid loading (packed bed heights) on the reactor performance (hydrogen purity) were studied. The simulation results show that a higher purity of the hydrogen product can be obtained in a SE-SMR reactor. The superficial gas velocity is an important parameter. In the present study, it has been found that the binary sorbent-catalyst particles are well mixed when the bed is operated at 0.2 m/s. The sorbent can adsorb CO2 steadily, thus the dry mole fraction of the hydrogen product can get above 0.95 in the 1 m laboratory-scale bed, and above 0.97 in the 4 m industrial-scale bed. However, when the laboratory scale bed is operated at a lower superficial gas velocity of 0.15 m/s, the binary sorbent-catalyst particles are segregated. When the bed is operated at a higher superficial gas velocity of 0.3 m/s, the process work load is increased, and the gas residence time in the reactor is decreased. Therefore, the hydrogen product purity is further decreased. The simulation results also show that there is an optimal bed height limit for the 4 m industrial-scale bed, at which further increase of the packed bed height cannot increase the hydrogen purity. © 2016 Canadian Society for Chemical Engineering

Bidragsytere

Zhongxi Chao

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Yuanwei Zhang

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Yuefa Wang

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Jana Poplsteinova Jakobsen

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS

Hugo Atle Jakobsen

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet
1 - 5 av 5