Cristin-resultat-ID: 1396281
Sist endret: 31. mai 2017, 09:04
NVI-rapporteringsår: 2016
Resultat
Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
2016

Real-time hybrid model tests of a braceless semi-submersible wind turbine. Part III: Calibration of a numerical model

Bidragsytere:
  • Petter Andreas Berthelsen
  • Erin Elizabeth Bachynski
  • Madjid Karimirad og
  • Maxime Thys

Bok

ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering - Volume 6: Ocean Space Utilization; Ocean Renewable Energy
ISBN:
  • 978-0-7918-4997-2

Utgiver

The American Society of Mechanical Engineers (ASME)
NVI-nivå 1

Serie

International Conference on Offshore Mechanics and Arctic Engineering (OMAE) [proceedings]
ISSN 1523-651X
NVI-nivå 1

Om resultatet

Vitenskapelig Kapittel/Artikkel/Konferanseartikkel
Publiseringsår: 2016
Volum: 2016
Hefte: 6
Antall sider: 13
ISBN:
  • 978-0-7918-4997-2

Klassifisering

Fagfelt (NPI)

Fagfelt: Konstruksjonsfag
- Fagområde: Realfag og teknologi

Beskrivelse Beskrivelse

Tittel

Real-time hybrid model tests of a braceless semi-submersible wind turbine. Part III: Calibration of a numerical model

Sammendrag

In this paper, a numerical model of a braceless semi-submersible floating wind turbine (FWT) is calibrated against model test data. Experimental data from a 1:30 scaled model tested at MARINTEK’s Ocean Basin in 2015 using real-time hybrid model testing (ReaTHM) is used for the calibration of the time-domain simulation model. In these tests, aerodynamic loads were simulated in real-time and applied to the physical model. The simulation model is based on the as-built model at full scale. The hull and turbine are considered as rigid, while bar elements are used to model the mooring system in a coupled finite element approach. Frequency-dependent added mass, radiation damping, and excitation forces/moments are evaluated using a panel method based on potential theory. Distributed viscous forces on the hull and mooring lines are added to the numerical model applying Morison’s equation. The viscous drag coefficients in Morison’s equation are calibrated against selected test data, including decay tests in calm water and test with irregular waves. Simulations show that the drag coefficients change when waves are present. Aerodynamic loads are included as time varying loads applied directly at the hub based on the actual physical loads from the experiment. This way, uncertainties related to the aerodynamic loads in the calibrations are removed. The calibrated numerical model shows good agreement with experimental data.

Bidragsytere

Petter Andreas Berthelsen

  • Tilknyttet:
    Forfatter
    ved Energi og transport ved SINTEF Ocean

Erin Elizabeth Bachynski-Polic

Bidragsyterens navn vises på dette resultatet som Erin Elizabeth Bachynski
  • Tilknyttet:
    Forfatter
    ved Energi og transport ved SINTEF Ocean

Madjid Karimirad

  • Tilknyttet:
    Forfatter
    ved Energi og transport ved SINTEF Ocean

Maxime X C C Thys

Bidragsyterens navn vises på dette resultatet som Maxime Thys
  • Tilknyttet:
    Forfatter
    ved Energi og transport ved SINTEF Ocean
1 - 4 av 4

Resultatet er en del av Resultatet er en del av

ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering - Volume 6: Ocean Space Utilization; Ocean Renewable Energy.

NN, NN. 2016, The American Society of Mechanical Engineers (ASME). Vitenskapelig antologi/Konferanseserie
1 - 1 av 1