Cristin-resultat-ID: 1430805
Sist endret: 22. november 2017, 10:37
NVI-rapporteringsår: 2017
Resultat
Vitenskapelig artikkel
2017

Primary Porcine Brain Endothelial Cells as In Vitro Model to Study Effects of Ultrasound and Microbubbles on Blood-Brain Barrier Function

Bidragsytere:
  • Sylvie Lelu
  • Mercy Afadzi
  • Sigrid Berg
  • Andreas Åslund
  • Sverre Helge Torp
  • Wolfgang Sattler
  • mfl.

Tidsskrift

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control
ISSN 0885-3010
e-ISSN 1525-8955
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2017
Publisert online: 2016
Trykket: 2017
Volum: 64
Hefte: 1
Sider: 281 - 290
Open Access

Importkilder

Scopus-ID: 2-s2.0-85015228488

Beskrivelse Beskrivelse

Tittel

Primary Porcine Brain Endothelial Cells as In Vitro Model to Study Effects of Ultrasound and Microbubbles on Blood-Brain Barrier Function

Sammendrag

Focused ultrasound (FUS) in the presence of microbubbles transiently and reversibly opens the blood-brain barrier (BBB) in rodents and humans, thereby providing a time window for increased drug delivery into brain tissue. To get insight into the underlying mechanisms that govern ultrasound (US)-mediated opening of the BBB, in vitro models are a useful alternative. In this paper, we have utilized an in vitro BBB model that consists of primary porcine brain endothelial cells (PBECs). PBEC monolayers are grown on permeable membranes, which allow assessment of key features of BBB function as well as US treatment. This experimental model is characterized by low permeability for both small molecules and proteins, has a high transendothelial electrical resistance, and expresses tight junctions and efflux pumps. Here, we compare the effects of inertial and stable cavitation in the presence of SonoVue microbubbles on PBEC monolayers' electrical resistance and permeability properties. Our results point out the fragility of PBEC monolayers, which enhances results variability. In particular, we show that handling of the inserts, such as medium change and transfer to the US setup, modifies the cellular response, and immunostaining of the monolayers introduces damage and cell detachment within the US-exposed monolayers. Our results indicate that stable cavitation might have a more pronounced impact on cell permeability as compared with inertial cavitation in vitro. This paper might contribute to further development of experimental setups that are suitable to characterize the impact of FUS and microbubbles on BBB properties in vitro.

Bidragsytere

Sylvie Lelu

  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk ved Norges teknisk-naturvitenskapelige universitet

Mercy Afadzi Tetteh

Bidragsyterens navn vises på dette resultatet som Mercy Afadzi
  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk ved Norges teknisk-naturvitenskapelige universitet

Sigrid Berg

  • Tilknyttet:
    Forfatter
    ved Institutt for sirkulasjon og bildediagnostikk ved Norges teknisk-naturvitenskapelige universitet
  • Tilknyttet:
    Forfatter
    ved Helse ved SINTEF AS

Karl Olof Andreas Åslund

Bidragsyterens navn vises på dette resultatet som Andreas Åslund
  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk ved Norges teknisk-naturvitenskapelige universitet

Sverre Helge Torp

  • Tilknyttet:
    Forfatter
    ved Laboratoriemedisinsk klinikk ved St. Olavs Hospital HF
  • Tilknyttet:
    Forfatter
    ved Institutt for klinisk og molekylær medisin ved Norges teknisk-naturvitenskapelige universitet
1 - 5 av 7 | Neste | Siste »