Cristin-resultat-ID: 1465640
Sist endret: 5. oktober 2017, 13:41
NVI-rapporteringsår: 2017
Resultat
Vitenskapelig artikkel
2017

A fracture-propagation-control model for pipelines transporting CO2-rich mixtures including a new method for material-model calibration

Bidragsytere:
  • Håkon Ottar Nordhagen
  • Svend Tollak Munkejord
  • Morten Hammer
  • Gaute Gruben
  • Marion Fourmeau og
  • Stephane Dumoulin

Tidsskrift

Engineering structures
ISSN 0141-0296
e-ISSN 1873-7323
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2017
Volum: 143
Sider: 245 - 260
Open Access

Importkilder

Scopus-ID: 2-s2.0-85018467493

Klassifisering

Emneord

Trykkavlastning • Rør • Karbondioksid • Elementmetoder • CFD

Beskrivelse Beskrivelse

Tittel

A fracture-propagation-control model for pipelines transporting CO2-rich mixtures including a new method for material-model calibration

Sammendrag

This work considers a predictive numerical modelling approach for fracture-propagation control in CO2-transport pipelines, an area where current engineering tools do not work. Fluid-structure interaction model simulations are compared with three published medium-scale crack-arrest experiments with CO2-rich mixtures. The fluid flow is calculated by a one-dimensional homogeneous equilibrium model, and the thermodynamic properties of CO2 are modelled using the Span–Wagner and the Peng–Robinson equation of state. The pipe material is represented by a finite-element model taking into account large deformations and fracture propagation. Material data commonly found in the literature for steel pipes in crack-arrest experiments is not sufficient to directly calibrate the material model used here. A novel three-step calibration procedure is proposed to fill the information gap in the material data. The resulting material model is based on J2 plasticity and a phenomenological ductile fracture criterion. It is shown that the numerical model provides good predictions of the pressure along the pipe, the ductile fracture speed and a conservative estimate of the final crack length. An approximately plane-strain stress state ahead of crack tip implies that a fracture criterion accounting for a wide range of stress states is not necessary.

Bidragsytere

Håkon Ottar Nordhagen

  • Tilknyttet:
    Forfatter
    ved Materialer og nanoteknologi ved SINTEF AS

Svend Tollak Munkejord

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS

Morten Hammer

  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS

Gaute Gruben

  • Tilknyttet:
    Forfatter
    ved Materialer og nanoteknologi ved SINTEF AS

Marion Fourmeau

  • Tilknyttet:
    Forfatter
    ved Materialer og nanoteknologi ved SINTEF AS
1 - 5 av 6 | Neste | Siste »