Cristin-resultat-ID: 1585548
Sist endret: 18. mai 2018, 10:09
Resultat
Vitenskapelig foredrag
2018

Fate and effects of transformed Ag and TiO2 nanoparticles aged through a lab-scale wastewater treatment system

Bidragsytere:
  • Anastasia Georgantzopoulou
  • Christian Vogelsang
  • Claire Coutris
  • Fabio Polesel
  • Benedek Plosz
  • Kuria Ndungu
  • mfl.

Presentasjon

Navn på arrangementet: SETAC Europe 28th Annual Meeting
Sted: Rome
Dato fra: 13. mai 2018
Dato til: 17. mai 2018

Arrangør:

Arrangørnavn: SETAC

Om resultatet

Vitenskapelig foredrag
Publiseringsår: 2018

Beskrivelse Beskrivelse

Tittel

Fate and effects of transformed Ag and TiO2 nanoparticles aged through a lab-scale wastewater treatment system

Sammendrag

The increase in production and use of Ag and TiO2 nanomaterials has led to their release in wastewater streams and subsequently in the environment. Nanoparticles (NPs) can undergo transformations in environmental media such as wastewaters leading to an alteration in behavior, bioavailability and toxicity that may differ from their pristine counterparts and make predictions challenging. In this context, the overall goal of the study was to elucidate (i) the behavior and transformation of Ag and TiO2 NPs in realistic matrices such as wastewater effluents and activated sludge and (ii) the subsequent effects of transformed particles in comparison to their pristine counterparts. In this study, a laboratory-scale wastewater treatment system was established and combined with a battery of ecotoxicological assays and characterization techniques. The system contained activated sludge and was operated as a pre-denitrification system fed with synthetic wastewater spiked daily with 10 µg Ag NPs/L (PVP coated, 25 nm, nanoComposix) and 100 µg TiO2 NPs/L (nominal primary size of 5 nm, NM-101, JRC) over a period of 5 weeks. During that period the effluents were collected weekly and the excess sludge was stored for the evaluation of terrestrial toxicity. Samples from all reactors and effluents were collected weekly and analyzed by sequential filtration and ICP-MS to determine the partitioning of NPs and their transformation products. Transmission electron microscopy and sp-ICP-MS were performed on selected samples. The effects of aged particles were assessed using a battery of bioassays including freshwater and marine algae (growth inhibition and reactive oxygen species -ROS- formation), crustaceans, as well as in vitro models of relevance for NP toxicity assessement (RTgill-W1 cell line, effects on metabolic activity, epithelial integrity, ROS formation, gene expression). The extent of the observed effects was dependent on the organism exposed, with bottom feeding organisms and algae being more sensitive, while the in vitro model was a good tool for environmental samples. Furthermore, the biosolids generated from the lab-scale continuous system were used in terrestrial microcosm experiments, giving insight into the fate and potential accumulation in a model terrestrial system. Experimental data generated from the continuous-flow operation of the activated sludge system and the targeted batch experiments will be used to model the fate and the removal of NPs.

Bidragsytere

Anastasia Georgantzopoulou

  • Tilknyttet:
    Forfatter
    ved Økotoksikologi ved Norsk institutt for vannforskning

Christian Vogelsang

  • Tilknyttet:
    Forfatter
    ved Systemer og teknologi ved Norsk institutt for vannforskning
Aktiv cristin-person

Claire Coutris

  • Tilknyttet:
    Forfatter
    ved Divisjon for miljø og naturressurser ved Norsk institutt for bioøkonomi

Fabio Polesel

  • Tilknyttet:
    Forfatter

Benedek Plosz

  • Tilknyttet:
    Forfatter
1 - 5 av 8 | Neste | Siste »