Cristin-resultat-ID: 1653614
Sist endret: 10. januar 2019, 07:41
NVI-rapporteringsår: 2018
Resultat
Vitenskapelig artikkel
2018

Data-driven deconvolution for large eddy simulations of Kraichnan turbulence

Bidragsytere:
  • Romit Maulik
  • Omer San
  • Adil Rasheed og
  • Prakash Vedula

Tidsskrift

Physics of Fluids
ISSN 1070-6631
e-ISSN 1089-7666
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2018
Volum: 30
Hefte: 12
Sider:
Artikkelnummer: 125109
Open Access

Importkilder

Scopus-ID: 2-s2.0-85059570401

Beskrivelse Beskrivelse

Tittel

Data-driven deconvolution for large eddy simulations of Kraichnan turbulence

Sammendrag

In this article, we demonstrate the use of artificial neural networks as optimal maps which are utilized for convolution and deconvolution of coarse-grained fields to account for sub-grid scale turbulence effects. We demonstrate that an effective eddy-viscosity is predicted by our purely data-driven large eddy simulation framework without explicit utilization of phenomenological arguments. In addition, our data-driven framework precludes the knowledge of true sub-grid stress information during the training phase due to its focus on estimating an effective filter and its inverse so that grid-resolved variables may be related to direct numerical simulation data statistically. The proposed predictive framework is also combined with a statistical truncation mechanism for ensuring numerical realizability in an explicit formulation. Through this, we seek to unite structural and functional modeling strategies for modeling non-linear partial differential equations using reduced degrees of freedom. Both a priori and a posteriori results are shown for a two-dimensional decaying turbulence case in addition to a detailed description of validation and testing. A hyperparameter sensitivity study also shows that the proposed dual network framework simplifies learning complexity and is viable with exceedingly simple network architectures. Our findings indicate that the proposed framework approximates a robust and stable sub-grid closure which compares favorably to the Smagorinsky and Leith hypotheses for capturing the theoretical k􀀀3 scaling in Kraichnan turbulence

Bidragsytere

Romit Maulik

  • Tilknyttet:
    Forfatter
    ved Oklahoma State University

Omer San

  • Tilknyttet:
    Forfatter
    ved Oklahoma State University
Aktiv cristin-person

Adil Rasheed

  • Tilknyttet:
    Forfatter
    ved Mathematics and Cybernetics ved SINTEF AS

Prakash Vedula

  • Tilknyttet:
    Forfatter
    ved University of Oklahoma
1 - 4 av 4