Cristin-resultat-ID: 1687918
Sist endret: 13. august 2019, 14:00
NVI-rapporteringsår: 2019
Resultat
Vitenskapelig artikkel
2019

Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels

Bidragsytere:
  • Manuel Schweikle
  • Sindre Hove Bjørnøy
  • Antonius Van Helvoort
  • Håvard Jostein Haugen
  • Pawel Sikorski og
  • Hanna Tiainen

Tidsskrift

Acta Biomaterialia
ISSN 1742-7061
e-ISSN 1878-7568
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2019
Publisert online: 2019
Volum: 90
Sider: 132 - 145
Open Access

Importkilder

Scopus-ID: 2-s2.0-85063541597

Beskrivelse Beskrivelse

Tittel

Stabilisation of amorphous calcium phosphate in polyethylene glycol hydrogels

Sammendrag

Acellular polymer-calcium phosphate composites are promising bone graft materials. Hydrogels are suitable for providing a temporary matrix, while calcium phosphate minerals serve as ion depots for calcium and phosphate required for de novo bone formation. Crystalline calcium phosphates are stable under biological conditions and are commonly used in such scaffolds. However, the low solubility of these phases reduces the availability of free ions and potentially obstructs the remodelling necessary for the formation of mineralised tissue. Here, we investigate two different strategies to stabilise amorphous calcium phosphates in a synthetic polyethylene glycol-based hydrogel matrix. In vitro experiments mimicking an injectable application showed that amorphous calcium phosphate (ACP) of variable stability was formed in the hydrogel matrices. In additive-free composites, ACP transformed into brushite within minutes. Citrate or zinc additives were found to stabilise the formed ACP phase to different degrees. In the presence of citrate, ACP was stable for at least 2 h before it transformed into hydroxyapatite within 3–20 days. Partial calcium substitution with zinc (Zn/Ca = 10%) produced zinc-doped ACP of high stability that did not show signs of crystallisation for at least 20 days. The presented methods and findings open new possibilities for the design of novel injectable synthetic bone graft materials. The possibility to produce ACP with tailorable stability promises great potential for creating temporary scaffolds with good osteogenic properties. Statement of significance Synthetic hydrogel-calcium phosphate (CaP) composites are promising biomaterials to replace human- and animal-derived bone scaffolds. Most reported hydrogel-CaP composite materials employ crystalline CaP phases that lack the osteoinductive properties of autograft. Stabilising amorphous calcium phosphates (ACP) could overcome this limitation, readily delivering calcium and phosphate ions and facilitating remodelling into new bone tissue. The design of synthetic hydrogel-ACP scaffolds, however, requires more understanding of the mineralisation processes in such matrices. This study presents a model system to characterise the complex mineral formation and transformation processes within a hydrogel matrix. We demonstrate a facile route to produce self-mineralising injectable synthetic hydrogels and prove two different strategies to stabilise ACP for different periods within the formed composites.

Bidragsytere

Manuel Schweikle

  • Tilknyttet:
    Forfatter
    ved Biomaterialer ved Universitetet i Oslo

Sindre Hove Bjørnøy

  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk ved Norges teknisk-naturvitenskapelige universitet
Aktiv cristin-person

Antonius Theodorus Johannes va Helvoort

Bidragsyterens navn vises på dette resultatet som Antonius Van Helvoort
  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk ved Norges teknisk-naturvitenskapelige universitet
Aktiv cristin-person

Håvard Jostein Haugen

  • Tilknyttet:
    Forfatter
    ved Biomaterialer ved Universitetet i Oslo

Pawel Tadeusz Sikorski

Bidragsyterens navn vises på dette resultatet som Pawel Sikorski
  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk ved Norges teknisk-naturvitenskapelige universitet
1 - 5 av 6 | Neste | Siste »