Cristin-resultat-ID: 1724186
Sist endret: 1. oktober 2019, 13:15
NVI-rapporteringsår: 2019
Resultat
Vitenskapelig artikkel
2019

Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm

Bidragsytere:
  • Kaiguang Zhao
  • Michael A. Wulder
  • Tongxi Hu
  • Ryan M. Bright
  • Qiusheng Wu
  • Haiming Qin
  • mfl.

Tidsskrift

Remote Sensing of Environment
ISSN 0034-4257
e-ISSN 1879-0704
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2019
Volum: 232
Sider: 1 - 20
Artikkelnummer: 111181
Open Access

Importkilder

Scopus-ID: 2-s2.0-85069838712

Beskrivelse Beskrivelse

Tittel

Detecting change-point, trend, and seasonality in satellite time series data to track abrupt changes and nonlinear dynamics: A Bayesian ensemble algorithm

Sammendrag

Satellite time-series data are bolstering global change research, but their use to elucidate land changes and vegetation dynamics is sensitive to algorithmic choices. Different algorithms often give inconsistent or sometimes conflicting interpretations of the same data. This lack of consensus has adverse implications and can be mitigated via ensemble modeling, an algorithmic paradigm that combines many competing models rather than choosing only a single “best” model. Here we report one such time-series decomposition algorithm for deriving nonlinear ecosystem dynamics across multiple timescales—A Bayesian Estimator of Abrupt change, Seasonal change, and Trend (BEAST). As an ensemble algorithm, BEAST quantifies the relative usefulness of individual decomposition models, leveraging all the models via Bayesian model averaging. We tested it upon simulated, Landsat, and MODIS data. BEAST detected changepoints, seasonality, and trends in the data reliably; it derived realistic nonlinear trends and credible uncertainty measures (e.g., occurrence probability of changepoints over time)—some information difficult to derive by conventional single-best-model algorithms but critical for interpretation of ecosystem dynamics and detection of low-magnitude disturbances. The combination of many models enabled BEAST to alleviate model misspecification, address algorithmic uncertainty, and reduce overfitting. BEAST is generically applicable to time-series data of all kinds. It offers a new analytical option for robust changepoint detection and nonlinear trend analysis and will help exploit environmental time-series data for probing patterns and drivers of ecosystem dynamics.

Bidragsytere

Kaiguang Zhao

  • Tilknyttet:
    Forfatter
    ved The Ohio State University

Michael A. Wulder

  • Tilknyttet:
    Forfatter
    ved Natural Resources Canada

Tongxi Hu

  • Tilknyttet:
    Forfatter
    ved The Ohio State University

Ryan M. Bright

  • Tilknyttet:
    Forfatter
    ved Divisjon for skog og utmark ved Norsk institutt for bioøkonomi

Qiusheng Wu

  • Tilknyttet:
    Forfatter
    ved University of Tennessee-Knoxville
1 - 5 av 11 | Neste | Siste »