Cristin-resultat-ID: 1771729
Sist endret: 12. mars 2021, 10:14
NVI-rapporteringsår: 2019
Resultat
Vitenskapelig artikkel
2019

Validation of linear energy transfer computed in a Monte Carlo dose engine of a commercial treatment planning system

Bidragsytere:
  • David Wagenaar
  • Linh T. Tran
  • Arturs Meijers
  • Gabriel Guterres Marmitt
  • Kevin Souris
  • David Bolst
  • mfl.

Tidsskrift

Physics in Medicine and Biology
ISSN 0031-9155
e-ISSN 1361-6560
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2019
Volum: 65
Hefte: 2
Open Access

Importkilder

Scopus-ID: 2-s2.0-85078504674

Beskrivelse Beskrivelse

Tittel

Validation of linear energy transfer computed in a Monte Carlo dose engine of a commercial treatment planning system

Sammendrag

The relative biological effectiveness (RBE) of protons is highly variable and difficult to quantify. However, RBE is related to the local ionization density, which can be related to the physical measurable dose weighted linear energy transfer (LETD). The aim of this study was to validate the LETD calculations for proton therapy beams implemented in a commercially available treatment planning system (TPS) using microdosimetry measurements and independent LETD calculations (Open-MCsquare (MCS)). The TPS (RayStation v6R) was used to generate treatment plans on the CIRS-731-HN anthropomorphic phantom for three anatomical sites (brain, nasopharynx, neck) for a spherical target (Ø=5 cm) with uniform target dose to calculate the LETD distribution. Measurements were performed at the University Medical Center Groningen proton therapy center (Proteus Plus, IBA) using a  + -probe utilizing silicon on insulator microdosimeters capable of detecting lineal energies as low as 0.15 keV/m in tissue. Dose averaged mean lineal energy 𝛾̅̅𝐷̅ depth-profiles were measured for 70 and 130 MeV spots in water and for the three treatment plans in water and an anthropomorphic phantom. The ̅𝛾̅𝐷̅ measurements were compared to the LETD calculated in the TPS and MCS independent dose calculation engine. D⋅𝛾̅̅𝐷̅ was compared to D⋅LETD in terms of a gamma-index with a distance-toagreement criteria of 2 mm and increasing dose difference criteria to determine the criteria for which a 90% pass rate was accomplished. Measurements of D⋅𝛾̅̅𝐷̅ were in good agreement with the D⋅LETD calculated in the TPS and MCS. The 90% passing rate threshold was reached at different D⋅LETD difference criteria for single spots (TPS: 1% MCS: 1%), treatment plans in water (TPS: 3% MCS: 6%) and treatment plans in an anthropomorphic phantom (TPS: 6% MCS: 1%). We conclude that D⋅LETD calculations accuracy in the RayStation TPS and open MCSquare are within 6%, and sufficient for clinical D⋅LETD evaluation and optimization. These findings remove an important obstacle in the road towards clinical implementation of D⋅LETD evaluation and optimization of proton therapy treatment plans.

Bidragsytere

David Wagenaar

  • Tilknyttet:
    Forfatter
    ved Rijksuniversiteit Groningen

Linh T. Tran

  • Tilknyttet:
    Forfatter
    ved University of Wollongong

Arturs Meijers

  • Tilknyttet:
    Forfatter
    ved Rijksuniversiteit Groningen

Gabriel Guterres Marmitt

  • Tilknyttet:
    Forfatter
    ved Rijksuniversiteit Groningen

Kevin Souris

  • Tilknyttet:
    Forfatter
    ved Université catholique de Louvain
1 - 5 av 13 | Neste | Siste »