Cristin-resultat-ID: 1831757
Sist endret: 22. oktober 2020, 15:47
NVI-rapporteringsår: 2020
Resultat
Vitenskapelig artikkel
2020

Development and validation study of a 1D analytical model for the response of reheat flames to entropy waves

Bidragsytere:
  • Francesco Gant
  • Andrea Gruber og
  • Mirko R. Bothien

Tidsskrift

Combustion and Flame
ISSN 0010-2180
e-ISSN 1556-2921
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2020
Publisert online: 2020
Trykket: 2020
Volum: 222
Sider: 305 - 316
Open Access

Importkilder

Scopus-ID: 2-s2.0-85090860083

Beskrivelse Beskrivelse

Tittel

Development and validation study of a 1D analytical model for the response of reheat flames to entropy waves

Sammendrag

Numerical simulations of laminar premixed flames burning hydrogen and methane in spontaneous ignition mode are performed by harmonically exciting the reactants’ temperature at the domain inlet. The results are compared to an analytical model representing the same reactive flow configuration. The model provides a simplified but nevertheless accurate representation of reheat combustion taking place in sequential gas turbine combustors. An analytic expression for autoignition flames transfer functions to entropy waves is derived and used to extend transfer function models from the literature. For validation purposes, results from fully compressible Direct Numerical Simulations (DNS), including a complete representation of the fluctuating acoustic and entropic fields of the reactive flow, are analyzed and compared to incompressible Unsteady Reynolds-Averaged Navier–Stokes (URANS) simulations that only take into account the fluctuating entropic field. Methane flames are found to be more sensitive to entropic forcing than hydrogen flames, featuring nonlinear phenomena even for low excitation amplitudes. In the linear regime, all flames behave as predicted by the analytical model and the URANS simulations are found to correctly predict the fluctuating entropic field. The transition from linear to nonlinear flame response is described in detail and its physical mechanisms are explained. Comparisons with results available in the literature show good prediction capabilities, both in terms of flame describing function and integrated heat release rate. Limitations of the proposed analytical model with respect to real combustion systems are discussed and a simple correction is proposed.

Bidragsytere

Francesco Gant

  • Tilknyttet:
    Forfatter
    ved Sveits
Aktiv cristin-person

Andrea Gruber

  • Tilknyttet:
    Forfatter
    ved Institutt for energi- og prosessteknikk ved Norges teknisk-naturvitenskapelige universitet
  • Tilknyttet:
    Forfatter
    ved Termisk energi ved SINTEF Energi AS

Mirko R. Bothien

  • Tilknyttet:
    Forfatter
    ved Zürcher Hochschule für Angewandte Wissenschaften
  • Tilknyttet:
    Forfatter
    ved Sveits
1 - 3 av 3