Cristin-resultat-ID: 1832558
Sist endret: 14. januar 2021, 12:32
NVI-rapporteringsår: 2020
Resultat
Vitenskapelig artikkel
2020

Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport

Bidragsytere:
  • Mats Kirkesæther Brun
  • Elyes Ahmed
  • Inga Berre
  • Jan Martin Nordbotten og
  • Florin Adrian Radu

Tidsskrift

Computers and Mathematics with Applications
ISSN 0898-1221
e-ISSN 1873-7668
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2020
Volum: 80
Hefte: 8
Sider: 1964 - 1984
Open Access

Importkilder

Scopus-ID: 2-s2.0-85090345760

Beskrivelse Beskrivelse

Tittel

Monolithic and splitting solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport

Sammendrag

This paper concerns monolithic and splitting-based iterative procedures for the coupled nonlinear thermo-poroelasticity model problem. The thermo-poroelastic model problem we consider is formulated as a three-field system of PDE’s, consisting of an energy balance equation, a mass balance equation and a momentum balance equation, where the primary variables are temperature, fluid pressure, and elastic displacement. Due to the presence of a nonlinear convective transport term in the energy balance equation, it is convenient to have access to both the pressure and temperature gradients. Hence, we introduce these as two additional variables and extend the original three-field model to a five-field model. For the numerical solution of this five-field formulation, we compare six approaches that differ by how we treat the coupling/decoupling between the flow and/from heat and/from the mechanics, suitable for varying coupling strength between the three physical processes. The approaches have in common a simultaneous application of the so-called -scheme, which works both to stabilize iterative splitting as well as to linearize nonlinear problems, and can be seen as a generalization of the Undrained and Fixed-Stress Split algorithms. More precisely, the derived procedures transform a nonlinear and fully coupled problem into a set of simpler subproblems to be solved sequentially in an iterative fashion. We provide a convergence proof for the derived algorithms, and demonstrate their performance through several numerical examples investigating different strengths of the coupling between the different processes.

Bidragsytere

Mats Kirkesæther Brun

  • Tilknyttet:
    Forfatter
    ved Centre for Ecological and Evolutionary Synthesis ved Universitetet i Oslo

Elyes Ahmed

  • Tilknyttet:
    Forfatter
    ved Mathematics and Cybernetics ved SINTEF AS

Inga Berre

  • Tilknyttet:
    Forfatter
    ved Matematisk institutt ved Universitetet i Bergen
  • Tilknyttet:
    Forfatter
    ved NORCE Energi og teknologi ved NORCE Norwegian Research Centre AS

Jan Martin Nordbotten

  • Tilknyttet:
    Forfatter
    ved Matematisk institutt ved Universitetet i Bergen

Adrian Florin Radu

Bidragsyterens navn vises på dette resultatet som Florin Adrian Radu
  • Tilknyttet:
    Forfatter
    ved Matematisk institutt ved Universitetet i Bergen
1 - 5 av 5