Cristin-resultat-ID: 1844697
Sist endret: 20. januar 2021, 15:37
NVI-rapporteringsår: 2020
Resultat
Vitenskapelig artikkel
2020

Numerical integrators for Lagrangian oceanography

Bidragsytere:
  • Tor Nordam og
  • Rodrigo Duran

Tidsskrift

Geoscientific Model Development
ISSN 1991-959X
e-ISSN 1991-9603
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2020
Volum: 13
Hefte: 12
Sider: 5935 - 5957
Open Access

Importkilder

Scopus-ID: 2-s2.0-85097397184

Klassifisering

Vitenskapsdisipliner

Matematikk og naturvitenskap

Emneord

Miljøteknologi

Beskrivelse Beskrivelse

Tittel

Numerical integrators for Lagrangian oceanography

Sammendrag

A common task in Lagrangian oceanography is to calculate a large number of drifter trajectories from a velocity field pre-calculated with an ocean model. Mathematically, this is simply numerical integration of an Ordinary Differential Equation (ODE), for which a wide range of different methods exist. However, the discrete nature of the modelled ocean currents requires interpolation of the velocity field in both space and time, and the choice of interpolation scheme has implications for the accuracy and efficiency of the different numerical ODE methods. We investigate trajectory calculation in modelled ocean currents with 800 m, 4 km and 20 km horizontal resolution, in combination with linear, cubic and quintic spline interpolation. We use fixed-step Runge-Kutta integrators of orders 1-4, as well as three variable-step Runge-Kutta methods (Bogacki-Shampine 3(2), Dormand-Prince 5(4) and 8(7)). Additionally, we design and test modified special-purpose variants of the three variable-step integrators, that are better able to handle discontinuous derivatives in an interpolated velocity field. Our results show that the optimal choice of ODE integrator depends on the resolution of the ocean model, the degree of interpolation, and the desired accuracy. For cubic interpolation, the commonly used Dormand-Prince 5(4) is rarely the most efficient choice. We find that in many cases, our special-purpose integrators can improve accuracy by many orders of magnitude over their standard counterparts, with no increase in computational effort. Equivalently, the special-purpose integrators can provide the same accuracy as standard methods, at a reduced computational cost. The best results are seen for coarser resolutions (4 km and 20 km), thus the special-purpose integrators are particularly advantageous for research using regional to global ocean models to compute large numbers of trajectories. Our results are also applicable to trajectory computations on data from atmospheric models.

Bidragsytere

Tor Nordam

  • Tilknyttet:
    Forfatter
    ved Klima og miljø ved SINTEF Ocean
  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk ved Norges teknisk-naturvitenskapelige universitet

Rodrigo Duran

  • Tilknyttet:
    Forfatter
    ved USA
1 - 2 av 2