Cristin-resultat-ID: 1879891
Sist endret: 16. februar 2021, 16:03
NVI-rapporteringsår: 2020
Resultat
Vitenskapelig artikkel
2020

Conditions for wave trains in spiking neural networks

Bidragsytere:
  • Johanna Senk
  • Karolína Korvasová
  • Jannis Schuecker
  • Espen Hagen
  • Tom Tetzlaff
  • Markus Diesmann
  • mfl.

Tidsskrift

Physical Review Research (PRResearch)
ISSN 2643-1564
e-ISSN 2643-1564
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2020
Publisert online: 2020
Volum: 2
Hefte: 2
Artikkelnummer: 023174
Open Access

Importkilder

Scopus-ID: 2-s2.0-85094955647

Klassifisering

Vitenskapsdisipliner

Fysikk

Emneord

Beregningsorientet nevrovitenskap

Beskrivelse Beskrivelse

Tittel

Conditions for wave trains in spiking neural networks

Sammendrag

Spatiotemporal patterns such as traveling waves are frequently observed in recordings of neural activity. The mechanisms underlying the generation of such patterns are largely unknown. Previous studies have investigated the existence and uniqueness of different types of waves or bumps of activity using neural-field models, phenomenological coarse-grained descriptions of neural-network dynamics. But it remains unclear how these insights can be transferred to more biologically realistic networks of spiking neurons, where individual neurons fire irregularly. Here, we employ mean-field theory to reduce a microscopic model of leaky integrate-and-fire (LIF) neurons with distance-dependent connectivity to an effective neural-field model. In contrast to existing phenomenological descriptions, the dynamics in this neural-field model depends on the mean and the variance in the synaptic input, both determining the amplitude and the temporal structure of the resulting effective coupling kernel. For the neural-field model we employ linear stability analysis to derive conditions for the existence of spatial and temporal oscillations and wave trains, that is, temporally and spatially periodic traveling waves. We first prove that wave trains cannot occur in a single homogeneous population of neurons, irrespective of the form of distance dependence of the connection probability. Compatible with the architecture of cortical neural networks, wave trains emerge in two-population networks of excitatory and inhibitory neurons as a combination of delay-induced temporal oscillations and spatial oscillations due to distance-dependent connectivity profiles. Finally, we demonstrate quantitative agreement between predictions of the analytically tractable neural-field model and numerical simulations of both networks of nonlinear rate-based units and networks of LIF neurons.

Bidragsytere

Johanna Senk

  • Tilknyttet:
    Forfatter
    ved RWTH Aachen University
  • Tilknyttet:
    Forfatter
    ved Forschungszentrum Jülich

Karolína Korvasová

  • Tilknyttet:
    Forfatter
    ved RWTH Aachen University
  • Tilknyttet:
    Forfatter
    ved Forschungszentrum Jülich

Jannis Schuecker

  • Tilknyttet:
    Forfatter
    ved Forschungszentrum Jülich

Espen Hagen

  • Tilknyttet:
    Forfatter
    ved Fysisk institutt ved Universitetet i Oslo
  • Tilknyttet:
    Forfatter
    ved Forschungszentrum Jülich

Tom Tetzlaff

  • Tilknyttet:
    Forfatter
    ved Forschungszentrum Jülich
1 - 5 av 7 | Neste | Siste »