Cristin-resultat-ID: 1890967
Sist endret: 3. januar 2022, 14:39
NVI-rapporteringsår: 2021
Resultat
Vitenskapelig artikkel
2021

Combining data assimilation and machine learning to infer unresolved scale parametrization

Bidragsytere:
  • Julien Brajard
  • Alberto Carrassi
  • Marc Bocquet og
  • Laurent Bertino

Tidsskrift

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
ISSN 1364-503X
e-ISSN 1471-2962
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2021
Publisert online: 2021
Volum: 379
Hefte: 2194

Importkilder

Scopus-ID: 2-s2.0-85101415884

Beskrivelse Beskrivelse

Tittel

Combining data assimilation and machine learning to infer unresolved scale parametrization

Sammendrag

In recent years, machine learning (ML) has been proposed to devise data-driven parametrizations of unresolved processes in dynamical numerical models. In most cases, the ML training leverages high-resolution simulations to provide a dense, noiseless target state. Our goal is to go beyond the use of high-resolution simulations and train ML-based parametrization using direct data, in the realistic scenario of noisy and sparse observations. The algorithm proposed in this work is a two-step process. First, data assimilation (DA) techniques are applied to estimate the full state of the system from a truncated model. The unresolved part of the truncated model is viewed as a model error in the DA system. In a second step, ML is used to emulate the unresolved part, a predictor of model error given the state of the system. Finally, the ML-based parametrization model is added to the physical core truncated model to produce a hybrid model. The DA component of the proposed method relies on an ensemble Kalman filter while the ML parametrization is represented by a neural network. The approach is applied to the two-scale Lorenz model and to MAOOAM, a reduced-order coupled ocean-atmosphere model. We show that in both cases, the hybrid model yields forecasts with better skill than the truncated model. Moreover, the attractor of the system is significantly better represented by the hybrid model than by the truncated model.

Bidragsytere

Julien Brajard

  • Tilknyttet:
    Forfatter
    ved Nansen Senter for Miljø og Fjernmåling
  • Tilknyttet:
    Forfatter
    ved Sorbonne Université

Alberto Carrassi

  • Tilknyttet:
    Forfatter
    ved University of Reading
  • Tilknyttet:
    Forfatter
    ved Universiteit Utrecht

Marc Bocquet

  • Tilknyttet:
    Forfatter
    ved Université Paris-Est

Laurent Bertino

  • Tilknyttet:
    Forfatter
    ved Nansen Senter for Miljø og Fjernmåling
1 - 4 av 4