Cristin-resultat-ID: 1895501
Sist endret: 19. april 2021, 08:50
NVI-rapporteringsår: 2021
Resultat
Vitenskapelig artikkel
2021

Dynamic Modeling of the Reactive Side in Large-Scale Fluidized Bed Boilers

Bidragsytere:
  • Guillermo Martinez-Castilla
  • Rubén Mocholí Montañés
  • David Pallarès og
  • Filip Johnsson

Tidsskrift

Industrial & Engineering Chemistry Research
ISSN 0888-5885
e-ISSN 1520-5045
NVI-nivå 2

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2021
Publisert online: 2021
Trykket: 2021
Volum: 60
Sider: 3936 - 3956
Open Access

Importkilder

Scopus-ID: 2-s2.0-85103494348

Beskrivelse Beskrivelse

Tittel

Dynamic Modeling of the Reactive Side in Large-Scale Fluidized Bed Boilers

Sammendrag

This work presents a dynamic model of the reactive side of large-scale fluidized bed (FB) boilers that describes the in-furnace transient operation of both bubbling and circulating FB boilers (BFB and CFB, respectively). The model solves the dynamic mass and energy balances accounting for the bulk solids, several gas species, and the fuel phase. The model uses semi-empirical expressions to describe the fluid dynamics, fuel conversion, and heat transfer to the furnace walls, as derived from units other than the studied ones. The model is validated against operational data from two different industrial units: an 80 MW CFB and a 130 MW BFB, both at steady-state and transient conditions. The validated model is used to analyze: (i) the performance of the reactive side of two FB boilers under off-design, steady-state conditions of operation; and (ii) the open-loop transient response when varying load or fuel moisture. The results underline the key role of heat capacity on the stabilization time. Within a given unit, the differences in heat capacity between the top and bottom of the furnace affect also the stabilization times, with the furnace top (lower heat capacity) being 1–3 times faster in the CFB unit and up to 10 times faster in the BFB unit. Due to the differences in gas velocity, the investigated boilers are found to stabilize more rapidly to input changes when running at full load than at partial load. Lastly, a variable ramping rate analysis shows that the inherent transient responses of the reactive side disappear when disturbances are introduced at (slower) rates, typical of industrial operation. Thus, the reactive side could be modeled as pseudo-static.

Bidragsytere

Guillermo Martinez-Castilla

  • Tilknyttet:
    Forfatter
    ved Chalmers tekniska högskola

Ruben Mocholi Montanes

Bidragsyterens navn vises på dette resultatet som Rubén Mocholí Montañés
  • Tilknyttet:
    Forfatter
    ved Chalmers tekniska högskola
  • Tilknyttet:
    Forfatter
    ved Gassteknologi ved SINTEF Energi AS

David Pallarès

  • Tilknyttet:
    Forfatter
    ved Chalmers tekniska högskola

Filip Johnsson

  • Tilknyttet:
    Forfatter
    ved Chalmers tekniska högskola
1 - 4 av 4