Cristin-resultat-ID: 1928807
Sist endret: 1. september 2021, 09:41
NVI-rapporteringsår: 2021
Resultat
Vitenskapelig artikkel
2021

Industrial Thermal Insulation Properties above Sintering Temperatures

Bidragsytere:
  • Amalie Gunnarshaug
  • Maria-Monika Metallinou Log og
  • Torgrim Log

Tidsskrift

Materials
ISSN 1996-1944
e-ISSN 1996-1944
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2021
Publisert online: 2021
Volum: 14
Hefte: 16
Artikkelnummer: 4721
Open Access

Importkilder

Scopus-ID: 2-s2.0-85113461954

Beskrivelse Beskrivelse

Tittel

Industrial Thermal Insulation Properties above Sintering Temperatures

Sammendrag

Processing highly flammable products, the oil and gas (O&G) industry can experience major explosions and fires, which may expose pressurized equipment to high thermal loads. In 2020, oil fires occurred at two Norwegian O&G processing plants. To reduce the escalation risk, passive fire protectionmay serve as a consequence-reducing barrier. For heat or cold conservation, equipment and piping often require thermal insulation, which may offer some fire protection. In the present study, a representative thermal insulation (certified up to 700 °C) was examined with respect to dimensional changes and thermal transport properties after heat treatment to temperatures in the range of 700 °C to 1200 °C. Post heat treatment, the thermal conductivity of each test specimen was recorded at ambient temperature and up to 700 _C, which was the upper limit for the applied measurement method. Based on thermal transport theory for porous and/or amorphous materials, the thermal conductivity at the heat treatment temperature above 700 °C was estimated by extrapolation. The dimensional changes due to, e.g., sintering, were also analyzed. Empirical equations describing the thermal conductivity, the dimensional changes and possible crack formation were developed. It should be noted that the thermal insulation degradation, especially at temperatures approaching 1200 °C, is massive. Thus, future numerical modeling may be difficult above 1150 °C, due to abrupt changes in properties as well as crack development and crack tortuosity. However, if the thermal insulation is protected by a thin layer of more robust material, e.g., passive fire protection to keep the thermal insulation at temperatures below 1100 °C, future modeling seems promising.

Bidragsytere

Amalie Gunnarshaug

  • Tilknyttet:
    Forfatter
    ved Institutt for fysikk og teknologi ved Universitetet i Bergen

Maria-Monika Metallinou Log

  • Tilknyttet:
    Forfatter
    ved Institutt for sikkerhet, kjemi- og bioingeniørfag ved Høgskulen på Vestlandet

Torgrim Log

  • Tilknyttet:
    Forfatter
    ved Institutt for sikkerhet, kjemi- og bioingeniørfag ved Høgskulen på Vestlandet
1 - 3 av 3