Cristin-resultat-ID: 1939016
Sist endret: 15. februar 2022, 08:19
NVI-rapporteringsår: 2021
Resultat
Vitenskapelig artikkel
2021

B-site cation inter-diffusion in yttrium substituted barium zirconate

Bidragsytere:
  • Ida Hasle
  • Stephan P. Waldow
  • Ute N. Gries
  • Roger A. De Souza
  • Einar Vøllestad og
  • Reidar Haugsrud

Tidsskrift

Journal of Materials Chemistry A
ISSN 2050-7488
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2021
Publisert online: 2021
Trykket: 2021
Volum: 9
Hefte: 37
Sider: 21142 - 21150
Open Access

Importkilder

Scopus-ID: 2-s2.0-85116096394

Klassifisering

Vitenskapsdisipliner

Uorganisk kjemi

Emneord

Diffusjon • Materialkjemi • Energimaterialer

Beskrivelse Beskrivelse

Tittel

B-site cation inter-diffusion in yttrium substituted barium zirconate

Sammendrag

B-site cation inter-diffusion in the ABO3 perovskite yttrium-substituted barium zirconate (BZY) was studied at temperatures from 1100 to 1460 °C under reducing and oxidising conditions. The experiments followed two different approaches using Ce as a chemical tracer for Zr. By fitting diffusion profiles of the cation obtained by either Electron Probe Microanalysis (EPMA) or Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS), we determined bulk, grain-boundary and effective diffusion coefficients. The activation energies of bulk diffusion (4.5 ± 0.4 eV) are similar to the migration enthalpy obtained by a computational approach (∼4 eV). On this basis, we conclude that the activation energies correspond to the migration enthalpies, assuming that the concentration of Zr vacancies in the bulk was frozen-in. Grain-boundary diffusion coefficients were found to be more than four orders of magnitude higher than the corresponding bulk values, while the activation energies of grain-boundary diffusion are relatively similar to those for bulk. This was attributed to higher concentrations of cation vacancies in space-charge layers at the boundaries. Overall, the results show that BZY electrolytes are highly stable towards degradation related to B-site cation diffusion.

Bidragsytere

Ida Margrete Hasle

Bidragsyterens navn vises på dette resultatet som Ida Hasle
  • Tilknyttet:
    Forfatter
    ved Senter for materialvitenskap og nanoteknologi ved Universitetet i Oslo
  • Tilknyttet:
    Forfatter
    ved Kjemisk institutt ved Universitetet i Oslo

Stephan P. Waldow

  • Tilknyttet:
    Forfatter
    ved RWTH Aachen University

Ute N. Gries

  • Tilknyttet:
    Forfatter
    ved RWTH Aachen University

Roger A. De Souza

  • Tilknyttet:
    Forfatter
    ved RWTH Aachen University

Einar Vøllestad

  • Tilknyttet:
    Forfatter
    ved Bærekraftig energiteknologi ved SINTEF AS
1 - 5 av 6 | Neste | Siste »