Cristin-resultat-ID: 1989331
Sist endret: 9. juni 2022, 09:11
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

Energy assessments of onboard CO2 capture from ship engines by MEA-based post combustion capture system with flue gas heat integration

Bidragsytere:
  • Aslak Einbu
  • Torbjørn Pettersen
  • John Morud
  • Finn Andrew Tobiesen
  • Chameera Jayarathna
  • Ragnhild Skagestad
  • mfl.

Tidsskrift

International Journal of Greenhouse Gas Control
ISSN 1750-5836
e-ISSN 1878-0148
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Publisert online: 2021
Trykket: 2022
Volum: 113
Artikkelnummer: 103526
Open Access

Importkilder

Scopus-ID: 2-s2.0-85120879778

Beskrivelse Beskrivelse

Tittel

Energy assessments of onboard CO2 capture from ship engines by MEA-based post combustion capture system with flue gas heat integration

Sammendrag

An early phase feasibility study was carried out for offshore CO2 capture from ship engines of a CO2 transport ship. A flexible in-house process simulator was applied in the assessments. Parametric studies of the overall onboard process were enabled by a fast data-driven capture plant model derived from supervised machine learning by PLS regression of a large dataset of rigorous simulations. The results show, based on the given models and assumptions, that the thermal energy coming from the ship engine exhaust gas is not sufficient alone to cover the thermal energy demand of an absorption-based CO2 capture unit operating above 50% capture rate using 30 wt% MEA (mono-ethanolamine) as solvent. The thermal energy demand can be met using a fuel afterburner as heat source. The added fuel consumption is estimated to increase the fuel consumption by 6–9% when operating with liquefied natural gas (LNG) as fuel source, while an increase of 8–12% is expected with diesel as fuel source. The effect of absorber height on energy consumption at a given CO2 capture rate is limited, especially for lower capture rates, and may be an important degree of freedom for optimizing the CAPEX/OPEX trade-offs. Use of state-of-the art solvents with lower specific energy consumptions will shift the results towards higher capture rates before a fuel afterburner is required to meet the thermal energy demands.

Bidragsytere

Aslak Einbu

  • Tilknyttet:
    Forfatter
    ved Prosessteknologi ved SINTEF AS

Torbjørn Pettersen

  • Tilknyttet:
    Forfatter
    ved Prosessteknologi ved SINTEF AS

John Morud

  • Tilknyttet:
    Forfatter
    ved Prosessteknologi ved SINTEF AS

Finn Andrew Tobiesen

  • Tilknyttet:
    Forfatter
    ved Prosessteknologi ved SINTEF AS

Chameera Jayarathna

  • Tilknyttet:
    Forfatter
    ved Prosessteknologi ved SINTEF AS
1 - 5 av 7 | Neste | Siste »