Cristin-resultat-ID: 2004263
Sist endret: 27. juni 2022, 10:44
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

A Flexible Fully Nonlinear Potential Flow Model for Wave Propagation over the Complex Topography of the Norwegian Coast

Bidragsytere:
  • Weizhi Wang
  • Csaba Pakozdi
  • Arun Kamath
  • Sebastien Fouques og
  • Hans Bihs

Tidsskrift

Applied Ocean Research
ISSN 0141-1187
e-ISSN 1879-1549
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Publisert online: 2022
Trykket: 2022
Volum: 122
Artikkelnummer: 103103
Open Access

Importkilder

Scopus-ID: 2-s2.0-85126303060

Beskrivelse Beskrivelse

Tittel

A Flexible Fully Nonlinear Potential Flow Model for Wave Propagation over the Complex Topography of the Norwegian Coast

Sammendrag

Coastal wave propagation and transformation are complicated due to the significant variations of water depth and irregular coastlines, which are typically present at the Norwegian fjords. A potential flow model provides phase-resolved solutions with low demands on computational resources. Many potential flow models are developed for offshore waves and lack of numerical treatments of coastal conditions. In the presented work, several modifications are introduced to a fully nonlinear potential flow model with a -grid for the purpose of coastal wave modelling: Shallow water breaking criteria are included in addition to deepwater breaking algorithms to approximate breaking waves over a complete range of water depth. A new coastline algorithm is introduced to detect complex coastlines and ensure robust simulations near the coast. The algorithm is compatible with structured grid arrangement in the horizontal plane and allows for high-order discretisation schemes for the free surface boundary conditions for an accurate representation of complex free surfaces. A parallelised solver for the Laplace equation is utilised to ensure fast simulations for large domains with multi-core infrastructures. The proposed model is validated against theories and experiments for various two- and three-dimensional nonlinear wave propagation and transformation cases that represent typical coastal conditions. The simulations show a good representation of nonlinear waves, and the results compare well with experiments. Furthermore, two large-scale engineering scenarios are simulated, where the applicability of the coastline algorithm and the parallel commutation capability of the model are demonstrated.

Bidragsytere

Widar Weizhi Wang

Bidragsyterens navn vises på dette resultatet som Weizhi Wang
  • Tilknyttet:
    Forfatter
    ved Institutt for bygg- og miljøteknikk ved Norges teknisk-naturvitenskapelige universitet

Csaba Pakozdi

  • Tilknyttet:
    Forfatter
    ved Skip og havkonstruksjoner ved SINTEF Ocean
Inaktiv cristin-person

Arun Mulky Kamath

Bidragsyterens navn vises på dette resultatet som Arun Kamath
  • Tilknyttet:
    Forfatter
    ved Institutt for bygg- og miljøteknikk ved Norges teknisk-naturvitenskapelige universitet

Sebastien Fouques

  • Tilknyttet:
    Forfatter
    ved Skip og havkonstruksjoner ved SINTEF Ocean

Hans Sebastian Bihs

Bidragsyterens navn vises på dette resultatet som Hans Bihs
  • Tilknyttet:
    Forfatter
    ved Institutt for bygg- og miljøteknikk ved Norges teknisk-naturvitenskapelige universitet
1 - 5 av 5