Cristin-resultat-ID: 2012415
Sist endret: 16. juni 2022, 12:52
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

Modeling Differential Enthalpy of Absorption of CO2 with Piperazine as a Function of Temperature

Bidragsytere:
  • Mayuri Gupta
  • Eirik Falck da Silva og
  • Hallvard Fjøsne Svendsen

Tidsskrift

Journal of Physical Chemistry B
ISSN 1520-6106
e-ISSN 1520-5207
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Volum: 126
Hefte: 9
Sider: 1980 - 1991
Open Access

Importkilder

Scopus-ID: 2-s2.0-85126131538

Beskrivelse Beskrivelse

Tittel

Modeling Differential Enthalpy of Absorption of CO2 with Piperazine as a Function of Temperature

Sammendrag

Temperature-dependent correlations for equilibrium constants (ln K) and heat of absorption (ΔHabs) of different reactions (i.e., deprotonation, double deprotonation, carbamate formation, protonated carbamate formation, dicarbamate formation) involved in the piperazine (PZ)/CO2/H2O system have been calculated using computational chemistry based ln K values input to the Gibbs–Helmholtz equation. This work also presents an extensive study of gaseous phase free energy and enthalpy for different reactions using composite (G3MP2B3, G3MP2, CBS-QB3, and G4MP2) and density functional theory [B3LYP/6-311++G(d,p)] methods. The explicit solvation shell (ESS) model and SM8T solvation free energy coupled with gaseous phase density functional theory calculations give temperature-dependent reaction equilibrium constants for different reactions. Calculated individual and overall reaction equilibrium constants and enthalpies of different reactions involved in CO2 absorption in piperazine solution are compared against experimental data, where available, in the temperature range 273.15–373 K. Postcombustion CO2 capture (PCC) is a temperature swing absorption–desorption process. The enthalpy of the solution directly correlates with the steam requirement of the amine regeneration step. Temperature-dependent correlations for ln K and ΔHabs calculated using computational chemistry tools can help evaluate potential PCC solvents’ thermodynamics and cost-efficiency. These correlations can also be employed in thermodynamic models (e.g., e-UNIQUAC, e-NRTL) to better understand postcombustion CO2 capture solvent chemistry.

Bidragsytere

Mayuri Gupta

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet

Eirik Falck da Silva

  • Tilknyttet:
    Forfatter
    ved Prosessteknologi ved SINTEF AS

Hallvard Fjøsne Svendsen

  • Tilknyttet:
    Forfatter
    ved Institutt for kjemisk prosessteknologi ved Norges teknisk-naturvitenskapelige universitet
1 - 3 av 3