Cristin-resultat-ID: 2020158
Sist endret: 7. november 2022, 11:29
NVI-rapporteringsår: 2022
Resultat
Vitenskapelig artikkel
2022

Predicting kinetic interface condition for austenite to ferrite transformation by multi-component continuous growth model

Bidragsytere:
  • Qiang Du og
  • Mohammed M'hamdi

Tidsskrift

Calphad
ISSN 0364-5916
e-ISSN 1873-2984
NVI-nivå 1

Om resultatet

Vitenskapelig artikkel
Publiseringsår: 2022
Volum: 77
Sider: 1 - 14
Artikkelnummer: 102423

Importkilder

Scopus-ID: 2-s2.0-85127499583

Beskrivelse Beskrivelse

Tittel

Predicting kinetic interface condition for austenite to ferrite transformation by multi-component continuous growth model

Sammendrag

A critical issue restricting the application of Hillert-Agren-Liu solute-drag based model to predict interfacial conditions at a migrating ferrite-austenite interface is the lack of value for trans-interface diffusion parameter, i.e., the L parameter. Even an estimation of the parameter's order of magnitude is difficult due to its ambiguous physical interpretation. In this paper we extend a different solute-drag based model, namely the binary continuous growth model originally developed for rapid solidification, toward austenite to ferrite phase transformation to avoid this long-standing issue. The extensions consist of the treatments of multi-alloying components including interstitial carbon element and Gibbs-Thomson effect. The extended multi-component continuous growth model employs a physical parameter with clear physical meanings, i.e., interface diffusive speed in describing trans-interface energy dissipation, and can predict kinetic interface conditions and spontaneous diffusion-controlled to diffusion-less transition without using the ambiguous L parameter. The model is verified by the good agreement of its calculation results with those predicted by Hillert-Agren-Liu model for Fe–C alloys and Fe–C–Mn alloys. Further the model's advantages over Hillert-Agren-Liu model are demonstrated by calculating the kinetic interface condition phase diagrams of Fe–C–Mn–Ni alloys. It is concluded that the extended multi-component continuous growth model is valuable in unifying the efforts in addressing the common question of predicting deviations from local equilibrium at a fast-migrating interface during solidification and solid-state phase transformation.

Bidragsytere

Qiang Du

  • Tilknyttet:
    Forfatter
    ved Metallproduksjon og prosessering ved SINTEF AS

Mohammed M'Hamdi

Bidragsyterens navn vises på dette resultatet som Mohammed M'hamdi
  • Tilknyttet:
    Forfatter
    ved Metallproduksjon og prosessering ved SINTEF AS
1 - 2 av 2